
361

Understanding visual
scripts: Improving
collaboration through
modular programming
Daniel Davis, Jane Burry and Mark Burry

issue 04, volume 09international journal of architectural computing



362

Understanding visual scripts: Improving
collaboration through modular programming
Daniel Davis, Jane Burry and Mark Burry

Abstract

Modularisation is a well-known method of reducing code complexity,
yet architects are unlikely to modularise their visual scripts. In this
paper the impact that modules used in visual scripts have on the
architectural design process is investigated with regard to legibility,
collaboration, reuse and design modification.Through a series of
thinking-aloud interviews, and through the collaborative design and
construction of the parametric Dermoid pavilion, modules are found to
impact the culture of collaborative design in architecture through
relatively minor alterations to how architects organise visual scripts.



1. INTRODUCTION:WHY VISUAL SCRIPTING CAN
BE DIFFICULT

A rapidly expanding group of architects and architectural students have
embraced visual scripting as a means of constructing parametric models.The
origins of visual programming can be traced back to the GRAIL system in
1969 [1].The use of visual programming in the modelling and design of
architecture was rare prior to the advent of Generative Components™
around 2003 and subsequently Grasshopper™ in 2007. Much like text-
based scripts, visual scripts allow the designer to specify a sequence of
relationships and operations to automate the construction of geometry.
Ideally the visual script facilitates the exploration of design options by
allowing the designer to change the inputs to the script and thereby sculpt
the geometry into the desired shape. On occasion the geometry will not
flex into the desired shape because there is no appropriate input for the
modification.When this occurs, the designer needs to reorganise the
structure of the script to include the required parameter in a process
Woodbury calls “erase, edit, relate and repair” [2]. In a visual script it can be
difficult to know what to erase, where to make the edit, and what needs
relating and repairing, because the visual tangle of relationships within the
script can obfuscate – rather than reveal – the function and relations of
operations.This is compounded in a collaborative environment where the
designer modifying the script may not be the original author, making it
difficult for them to uncover the design intentions within the interwoven
relationships of the script. On some parametrically modelled projects,
making these types of changes can become so difficult that building a new
script is easier [3].A number of authors have cited this as the cause of
project delays and the cause of design options not being explored [3-5].

A similar problem existed in computer science during the late 1960’s
when unstructured programs, relying on the GOTO statement, reached a
point where the relationships within the program became so difficult to
understand it was feared complex programs were unmaintainable – starting
over was easier than trying to maintain the code [6-7]. One solution was to
organise the code with modules. It is a solution that has persisted with
modules becoming a fundamental method of abstracting complicated text-
based code to make it more comprehensible. However, a survey of
approximately 2000 visual scripts created by designers and reported here,
indicates that designers are currently much less likely to use the time
honoured method of creating modules to organize and manage their visual
scripts than programmers to organize their programs.This is a peculiar
situation, particularly when modules seem to address the specific difficulties
architects are experiencing with collaborative authorship and modifications
of tangled scripts.

The aim of this article is to understand how the modularisation of visual
scripts relates to the culture of architectural practice, with regard to

363Understanding visual scripts: Improving collaboration through modular programming



collaborative design and the modification of geometry.The principle
benefactors of this research are the increasing numbers of architects and
architecture students using visual scripts to address complicated
architectural problems in collaborative design environments.The two
research methods employed to address this aim are: a series of ‘thinking
aloud’ interviews to compare the comprehension of unstructured visual
scripts with modularised visual scripts; and a reflective practice account of
using modularised visual scripts during the collaborative design of the
Dermoid pavilion. McNeel’s Grasshopper™ with its wide and rapidly
increasing uptake by architects, and accessible usage data, is adopted as the
exclusive basis of the study.This imposes particular characteristics and
limitations on the implications of the research and types of models
interrogated, which we also acknowledge and explore in the paper.

2. STRUCTURED PROGRAMMING

By the late 1960’s programming had come of age: the essential mechanics of
programming had been developed, the speed of computers was increasing
exponentially, and more code was being written.Yet despite these
advancements, programmers were struggling to produce and maintain
collaboratively written code, in part because the GOTO statements would
often tangle and become ‘spaghetti code’[8]. During this period it was
feared that computer programs were becoming too complex for humans to
write and human cognition would be the limiting factor in the application of
computation [6].

There was no “silver bullet” to the software crisis but one of the
earliest and still prevalent strategies was to structure the code into modules
[9].A module, defined by Wong and Sharp, is “a sequence of program
instructions bounded by an entry and exit point,” which performs “one
problem-related task” [10].Translated into a visual scripting tool architects
use, Grasshopper™, a module might resemble the graph in Figure 1.

� Figure 1:A typical module in

Grasshopper™.The grey boxes are

operations that have been linked

together to form a larger module, with

a set of inputs (2) and a set of outputs

(3). Note that while each grey box is

itself a module, the code encapsulated

within is unable to be modified by a

user of Grasshopper™.

364 Daniel Davis, Jane Burry and Mark Burry



Leaving aside the precise details of a module’s implementation – of
which there are many – all modules, including the one shown in Figure 1,
have the general characteristics Wong and Sharp discuss:

• Modules perform one task, which is often conveyed through the
name of the module (1, 5).

• Modules contain defined input parameters – the only place data
enters the module (2).

• Modules contain defined output parameters – the only place data
leaves the module (3).

• Modules have commands between these parameters that can only
be evoked by passing data through the module’s inputs (4).

These changes help organise code by creating self-contained chunks of
code, at a comprehensible size, linked together through designated entry
and exit points rather than with unordered threads of GOTO commands.
The advantage of these changes was not initially apparent and many
programmers were opposed to structuring code believing that it destroyed
the art of programming.This opposition diminished once the benefits of
modular programming became apparent [8]:

• Modules could be shared and reused because the code was self-
contained.

• People could work collaboratively by developing modules
separately and connecting them together later.

• Debugging could occur at the module level rather than the
program level.

• The code became self-documenting – the name of the module and
the inputs and outputs, gives some indication of what the module
does without looking at external documentation.

The principles of text-based modularisation translate to visual
programming.The abstraction attained by modularisation is considered a
“standard remedy” for improving clarity in visual programming languages
[11].

3.THE STRUCTURE OF EXISTING VISUAL SCRIPTS

The most comprehensive text on how to structure visual scripts in
architecture is a paper by Woodbury,Aish and Kilian, entitled Some Patterns
for Parametric modeling [5].The paper riffs on the seminal book Design
Patterns by Gamma, Helm, Johnson and Vlissides [12] (itself is based upon
the work of architect Christopher Alexander). Design Patterns focuses on
methods of structuring code to address problems with the code itself –
such as reuse, readability and extendibility. In contrast, Some Patterns for
Parametric modeling (later published in Elements of Parametric Design [2])
presents patterns that solve problems specific to architecture – such as
ordering points, projecting geometry and selecting objects.The ‘Clear

365Understanding visual scripts: Improving collaboration through modular programming



Names’ pattern is the only one to addresses a problem with the visual
script itself.

Clear Names advocates naming objects with “clear, meaningful, short and
memorable names” [2].There is an obvious benefit to knowing what a
parameter does and it generally takes little effort to name a parameter.
However in a survey of 1982 visual scripts publicly shared by 575 designers
on the McNeel’s Grasshopper™ online forum over a 29-month period [13],
56% of scripts have no named parameters. In part this is an artefact of visual
programming where, unlike with text-based programming, often variables
can be instantiated without naming them. It may also be an issue of
education and experience. It could even be that Clear Names are not
particularly useful, although since the designers on the forum are giving the
scripts to their peers, they have an incentive to make the script more legible
than they might otherwise.

The same can be seen in the modularisation of parametric models on
the Grasshopper™ online forum. Most visual scripting languages for
architects already have tools for creating modules; referred to as ‘features’
in Bentley’s Generative Components™, called ‘digital assets’ in Sidefx’s
Houdini™ and ‘clusters’ in McNeel’s Grasshopper™. For the same group of
models exchanged on the Grasshopper™ online forum, 97.5% contained no
clusters. Like with Clear Names the likely cause of this low use of modules
might be education, or nuances in the Grasshopper™ software, or perhaps
even because architects do not find modules useful in their visual scripts.

These results support Woodbury’s assertion that designers leave
“abstraction, generality and reuse mostly for ‘real programmers’” [2].
Woodbury suggests this is due to motivation, with architects wanting to
design with visual scripts rather than learn to structure them like ‘real
programmers’ [2]. However with very little published about how architects
can structure visual scripts, and with no discussion of how script structure
affects the culture of design or the architectural outcome, designers may
not readily have enough information to make an informed decision.

4. COMPREHENSION OF MODULAR VISUAL
SCRIPTS

4.1. Method

To understand how architects comprehend modular visual scripts, we
conducted a series of ‘thinking-aloud’ interviews.These interviews were
used to compare the legibility of scripts structured with modular
programming principles relative to the legibility of unstructured scripts.
Thinking-aloud interviews are an interview method commonly used in
computer usability studies to understand how users carry out a task [14-
15].Typically, participants were asked to perform a task in a software
package and describe “things they find confusing, decisions they are making”
and what they are reading [14]. In this case each participant was asked to

366 Daniel Davis, Jane Burry and Mark Burry



explain the functionality of an unfamiliar visual script by describing how the
script inputs control the geometry. Participants could not see the geometry
the script produced but were free to explore the graph by dragging,
zooming and clicking on screen.The participants’ responses and actions give
some insight into how designers attempt to understand an unfamiliar script
and how legible designers find the various visual scripts.

The participants in the study were randomly selected from a group of
25 students studying architecture at the Royal Danish Academy of Fine Art
and attending a weeklong workshop on parametric modelling. Four students
were selected, based on usability expert Jacob Neilson’s recommendation to
use between 3-5 participants in thinking-aloud interviews [16].The selected
students each had between one and seven years’ experience designing
architecture with a computer, although they all had only one year’s
experience using visual scripts – making them competent enthusiasts but by
no means experts. Being familiar with Grasshopper™ but unfamiliar with
the specific scripts they were shown, the participants were in a role similar
to a designer trying to understand a script a colleague had shared with
them.

367Understanding visual scripts: Improving collaboration through modular programming

� Figure 2:Three Grasshopper™

scripts in the order they were shown

to the students.Top:A modularised

script (2M). Middle:A large

modularised script (3M). Bottom:An

unstructured script (2Us), functionally

equivalent to the top script (2M).



Name Function Structure Size Nodes Edges Familiar task Equivalent

1M 1 Modular Small 41 52 Yes 1Us

1Us 1 Unstructured Small 26 37 Yes 1M

2M 2 Modular Small 33 39 Yes 2Us

2Us 2 Unstructured Small 20 26 Yes 2M

3M 3 Modular Large 121 142 No

The participants were shown three Grasshopper™ scripts in a predefined
order.The first and last were a small script that did a task the participants
had learnt about in the workshop – projecting lines onto surfaces.The
scripts were functionally equivalent, containing the same operations in the
same order, with the only difference being the first script was a modularised
version of the unstructured final script.These two scripts allowed a
comparison to be made between the comprehension of a modularised
script and the comprehension of an unstructured script.To mask the fact
that the first script and the final script were functionally identical, the
participants were shown a script in-between that was much larger and did a
task the participants were unfamiliar with – drawing triangles on a
hemisphere from an inscribed polyhedron.To reduce the bias from one
script being uncharacteristically legible or illegible, two versions of the first
and last script were created and randomly shown.Therefore of the scripts
shown in Table 1, the participants were shown in order either script-1M, 3M
and 1Us or script-2M, 3M and 2Us.

4.2. Results of comparison

The modular visual scripts (1M or 2M) were far easier for the participants
to describe than the unstructured equivalents (1Us or 2Us).This is not a
surprising result given what is already known about modularisation.What is
unexpected is how poorly the participants understood the unstructured
scripts.When shown the first modular script (1M or 2M), all participants
could describe the inputs, outputs and function of the script. Half could
describe all the script’s major stages.When asked about individual nodes,
they generally understood what the nodes did but sometimes could not
understand what the nodes were doing within the context of the model. In
contrast when shown the equivalent script in an unstructured form (1Us or
2Us) all participants guessed incorrectly the function of the script.A typical
comment from Participant-2 was:“It relaxes the lines? That’s a guess though,
because I am not sure what any of these elements [nodes], I am not sure
what any of them do [in this context].” They all struggled to find the inputs
and outputs of the script and none could assemble their knowledge of the
individual nodes into an understanding of the larger stages of the script.
What is interesting here is not so much that modularity improves the
legibility of the scripts (which is already well known) but that unstructured
scripts – even small ones – are fairly incomprehensible to designers

368 Daniel Davis, Jane Burry and Mark Burry

� Table 1: Five scripts shown to

the participants – each

participant either saw 1M, 3M and

1Us or 2M, 3M and 2Us.



unfamiliar with them. Even the much larger modular script (3M) was better
understood by the participants than the small unstructured visual script.
When shown 3M all the participants could methodically work through the
nodes in each module, however none could put the modules together to
understand the overall aim of the script (admittedly they had not learnt
about the geometry 3M produced). Significantly this shows modularisation
does not improve comprehension of a script so much as it determines
whether a visual script will be legible to a designer unfamiliar with it. Large
scripts, if structured, can be more legible than unstructured small scripts.

4.3. Factors in Comprehension

Modularisation seems to work because the overview it provides helps guide
the user’s understanding of successively smaller parts of the script.When
observing the participants, they were rarely able to reverse this and deduce
the overview through understanding the interaction of the smaller parts.
This is possibly why the unstructured models were so difficult for them to
understand.The paradox is that designers create visual scripts by assembling
small parts of the script into a whole and yet they find it much easier to
read a script starting with the overview and delving into the smaller parts.
Designers are probably able to pull off this paradox because when they are
assembling the smaller parts of the script it is likely they have in mind some
overall understanding of what they are creating. It seems without
modularisation this overall mental model of how the script works is lost,
and with it the ability for an a designer not familiar with it to comprehend
the script.

In addition to this preference to understand the script in a top-down
rather than bottom-up way, a few other generalisations about key factors in
comprehension can be made:

• Names: Participants regularly referred to node names and module
names as they explained the script.This reinforces the ‘Clear
Names’ design pattern suggested by Woodbury [2].

• Positioning: Participants struggled to identify parameter nodes
and output nodes when they were positioned amongst the other
nodes in the unstructured script (1Us or 2Us).When the inputs
and outputs were positioned on the left and right of the script
respectively the participants could readily identify them. Similarly
separating the parts of the script both physically and with colour
were cited by the participants as being helpful.

• Explanations: Some of the modules inside the modular scripts
(1M, 2M or 3M) contained short explanations of what they did.
Participants seldom took the time to read these, indicating a self-
documented script (clear names and a clear structure) is preferable
to one explained through external documentation.

369Understanding visual scripts: Improving collaboration through modular programming



The key finding of these interviews is that the way designers come to
understand a visual script is different to the way they construct them. If a
designer’s intention is not communicated through the names of the nodes
and through the structure of the nodes, then a designer unfamiliar with the
script will find it difficult – if not impossible – to assemble an understanding
of the script from its component parts.Thankfully including clear names and
grouping nodes together by function are relatively minor modifications to
the visual script, which can substantially improve its legibility.

5. MODULES IN PRACTICE

In the design of the Dermoid pavilion, we tried to apply modular visual
scripts within the architectural design process to better evaluate the impact
of modularisation on the design process.The pavilion was a collaboration
between researchers at the Center for Information Technology and
Architecture (CITA) at the Royal Danish Academy of Fine Arts, led by Prof.
Mette Thomsen, and researchers at the Spatial Information Architecture
Laboratory (SIAL) at the Royal Melbourne Institute of Technology, led by
Prof. Mark Burry as part of his VELUX Visiting Professorship to CITA.The
collaboration occurred both remotely through shared digital files and
through a series of workshops held between 2010 and 2011 at CITA in
Copenhagen. Burry has discussed the rational for the Dermoid as well as
the research outcomes in Scripting Cultures [17].The following section will
instead discuss the technical aspects of creating and using modular visual
scripts to assist in the design of Dermoid.

370 Daniel Davis, Jane Burry and Mark Burry

� Figure 3: Dermoid installed at the

1:1 Exhibition, Copenhagen, 2011.

Photo by Anders Ingvartsen.



Dermoid is constructed from a wooden reciprocal frame where the
interlocking members weave under and over a doubly curved surface of
continuously changing curvature, forming hexagons [18]. For structural
reasons the wooden members could not twist over the doubly curved
surface and could not be too short nor too long. It was necessary to model
the project parametrically since many of the design constraints, such as
material performance and the overall form, were not known until shortly
before construction commenced (having been calculated progressively
through a series of physical modelling experiments in the previous
workshops).Yet the reciprocal frame in Dermoid did not lend itself to
parametric modelling due to the circular relationships formed in the
structure.The geometry of Dermoid presents a significant challenge to
model, made more difficult by many parameters being unknown and by the
collaborators being remote from each other.

The design and modelling of Dermoid were intermixed in terms of subjects,
methods and application of software. One of the early investigations looked
at how patterns could be distributed evenly across a doubly curved surface
(during this time the surface shape and pattern were not known).This took
the form of a visual script and over time a chain of visual scripts had been
developed, the first creating the underlying surface, and the rest adding
details to the design until the last produced the construction
documentation. Each script was a self-contained parametric model that
could be thought of as a module, with a prescribed set of inputs from the
previous stage and a distinct set of outputs.This structure could not have
been anticipated at the start of the project because the design intentions
were unclear.As the design crystallised, so too the structure emerged and

� Figure 4:The modules that make up

Dermoid.Top: Dermoid. Middle:The

outputs of the 6 major stages. Bottom:

The modular visual scripts from stage 3.

371Understanding visual scripts: Improving collaboration through modular programming



evolved with the project. Breaking the project into these modules allowed
different team members to work independently on different stages and
swap the new versions into the overall structure without breaking the
previous (and concurrent) work. Provided the stage module produced the
expected outputs, designers were free to create the stage using whatever
software they thought fit, which proved useful for ‘wicked’ stages – like
beam distribution – where over the course of the project alternative
strategies were developed on at least five different software packages.

The visually scripted stages were themselves broken down into modules.
As with the overall structure, it was difficult to anticipate these modules
prior to the creation of the scripts. Normally the scripts were constructed
as an unstructured assembly of parts and then refactored once they began
to work.These refactorings normally involved pruning the branches of code
not contributing to the outcome and adding in new nodes to name the
paths of data.The refactorings also involved grouping the nodes into
modules, which could often be found by looking for places where the data
was naturally channelled into one or two streams. On a number of
occasions the modules were reused by designers who had not created
them. Perhaps the most salient example was a designer involved only in the
final months of the project who was tasked with changing the topology of
the beam. He changed the topology primarily by linking existing modules
together, without disrupting the overall flow of the major stages in the
project.This type of reuse suggests that designers were able to interpret
their colleague’s modules and it demonstrates they were able to cleanly
extract a module from one context and reconnect it in another context.
The modules seemed to help overcome some of the difficulties of
understanding, reusing and modifying unstructured visual scripts, although
they are cumbersome to implement during the design and construction of
the stages.

The complexities of Dermoid, both in terms of geometry and in terms
of collaboration, place it on the limit of what is currently possible in
parametric architectural modelling, and perhaps beyond what is practical
with an unstructured visual script. Breaking the project into a hierarchy of
modules made it possible for designers to collaborate using disparate
software, while the smaller modules seemed to promote script reuse.At
both scales, structure was found in an unstructured beginning and became
legible through a few, relatively minor, changes.

6. DISCUSSION:THE IMPLICATIONS FOR
ARCHITECTS

The results of this research should be seen as good news for architects:
relatively minor changes to the way they structure their visual scripts can
greatly increase script legibility, making it easier to share and modify the
script.The most valuable additions appear to be:

372 Daniel Davis, Jane Burry and Mark Burry



• Grouping together nodes that perform a particular task and in
doing so designate data entry and exit points for the group –
forming a module.

• Clearly naming the module and the nodes.
The major question is whether designers have the time, or inclination, to
fuss with the structure of their scripts.Woodbury’s assertion that designers,
being amateur programmers, leave “abstraction, generality and reuse mostly
for ‘real programmers’” implies that structuring a script gets in the way of
actually designing [2].To a certain extent this is true, it is difficult to define a
rigid structure of modules when the overall design is still fuzzy. However
visual scripts left the way they were created are extremely difficult for
other designers to understand and therefore use or modify.Whether
architects take the time to organise their scripts is likely to be resolved in
practice, with projects like the Dermoid being on the brink of being too
complex to model in an unstructured way.The implications for teachers is
that architecture students need to be taught to communicate with visual
scripts in addition to learning how to assemble and design with visual
scripts.This involves a shift from considering visual scripts as drawing tools
– the digital equivalent of a pencil and French curve – to understanding
them as a form of representation in their own right.There are many
arguments for why architects might not be inclined to structure visual
scripts but if structure provides a way of collaborating on a design that
would be too complex otherwise, architects may have no option but to
become ‘real programmers’ and learn about abstraction, generality and
reuse.

The two drivers for this change will be how much value is placed on
resolving complexity in the future, and how much more benefit can be
extracted from structuring visual scripts.The challenge of applying
parametric modelling to a relatively small and logically well-defined problem,
like Dermoid, foreshadows the complexity that could be expected in future
visual scripts. Modularising the script is one way to make this increased
complexity more legible. How much more legible the script can become
depends on the further development of these techniques.The other obvious
candidates for translation are instancing of modules and polymorphism,
however such developments first need to be supported within architectural
visual scripting tools. In computer science, structured programming has
accompanied a culture of sharing common libraries of components.This
research has shown that the visual modularisation of visual scripts does help
to make sharing them easier.With complicated projects being designed
collaboratively using visual scripts, and with better structuring techniques
likely in the future, structuring visual scripts may become an essential part
of successfully designing architecture with scripts.

373Understanding visual scripts: Improving collaboration through modular programming



7. CONCLUSION

The way architects create visual scripts (by assembling small parts into a
whole) is at odds with how they understand them (from the whole to the
smaller parts). Modularising an unstructured script is one method for
communicating the overall intention of the script, thereby making the script
more legible for colleagues. Creating a module is a relatively minor exercise
and involves grouping nodes together based on the task they perform,
providing a single set of inputs to invoke these nodes and providing a single
set of outputs to retrieve the data, as well as giving clear names to the
nodes.While these changes seem trivial, this study shows they are critical
factors in the legibility of the script, and therefore the ease with which the
script can be shared, reused and modified.

Acknowledgements

This research was funded by the Australian Research Council discovery
grant “Challenging the Inflexibility of the Flexible Digital Model” led by Mark
Burry, John Frazer and Jane Burry.The Dermoid workshop was part of Prof.
Mark Burry’s VELUX Visiting Professorship at Center for Information
Technology and Architecture at Royal Danish Academy of Fine Arts – 2009-
2011.This article draws on a paper presented at CAAD Futures 2011 [18].

References
1. Ellis,T. O., Heafner, J. F. and Sibley,W. L., The Grail Project: An experiment in Man-

machine communications,The RAND Corporation, 1969.

2. Woodbury, R. F., Elements of Parametric Design, Routledge,Abingdon, 2010.

3. Burry, M., Parametric Design and the Sagrada Família, Architectural Research
Quarterly, 1996, (Summer), 70-80.

4. Monedero, J., Parametric design.A review and some experiences, in: Martens, B.,
Linzer, H.,Voigt,A. eds. Challenges of the Future: 15th eCAADe Conference
Proceedings, Österreichischer Kunst- und Kulturverlag,Vienna, 1997.

5. Woodbury, R.,Aish, R. and Kilian,A., Some Patterns for Parametric Modeling, in:
Lilley, B. and Phillip, B. eds. 27th Annual Conference of the Association for Computer
Aided Design in Architecture, Dalhousie University, Halifax, 2007, 222-229.

6. Dijkstra, E.W., Go To Statement Considered Harmful, Communications of the
Association for Computing Machinery, 1968, 11(3),147-148.

7. NATO Science Committee, Software Engineering. NATO Science Committee,
Garmisch, 1968.

8. Mall, R., Fundamentals of Software Engineering, 2nd edn., Prentice-Hall, New Delhi,
2004.

9. Brooks, F., The mythical man-month: essays on software engineering,Addison Wesley
Longman Inc., Massachusetts, 1975.

10. Wong,Y. and Sharp, J.,A Specification and Design Methodology Based on Data
Flow Principles, in: Sharp, J. ed., Dataflow computing:Theory and Practice,Ablex
Publishing, Norwood, 1992, 37-79.

374 Daniel Davis, Jane Burry and Mark Burry



11. Green,T. and Petre, M., Usability Analysis of Visual Programming Environments:A
‘Cognitive Dimensions’ Framework, Journal of Visual Languages & Computing, 1996,
7(2), 131-174.

12. Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software,Addison-Wesley, Massachusetts, 1995.

13. http://www.grasshopper3d.com/forum/ [data recorded from May 2009 to
October 2011].

14. Lewis, C. and Rieman, J., Task-Centered User Interface Design: A Practical Introduction,
Self published, 1993.

15. Nielsen, J., Usability Engineering, Morgan Kaufmann, San Diego, 1993.

16. Nielsen, U., Guerrilla HCI: Using Discount Usability Engineering to Penetrate the
Intimidation Barrier, in Bias, R. G. and Mayhew, D. J., Cost-Justifying usability, Morgan
Kaufmann, California, 1994, 245-272.

17. Burry, M., Scripting Cultures: Architectural Design and Programming,Wiley, Chichester,
2011.

18. Davis, D., Burry, J. and Burry, M., Untangling parametric schemata: enhancing
collaboration through modular programming, in: Leclercq, P., Heylighen,A. and
Martin, G. eds. Proceedings of the 14th international conference on Computer Aided
Architectural Design, University of Liege, Liege, 2011.

375Understanding visual scripts: Improving collaboration through modular programming

Daniel Davis, Jane Burry and Mark Burry

Royal Melbourne Institute of Technology
Spatial Information Architecture Laboratory
Melbourne,Australia

D. Davis, daniel.davis@rmit.edu.au






