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Abstract

In this thesis I consider the relationship between the design of software 

and the design of flexible parametric models.

There is growing evidence that parametric models employed in practice 

lack the flexibility to accommodate certain design changes. When a 

designer attempts to change a model’s geometry (by modifying the model’s 

underlying functions and parameters) they occasionally end up breaking 

the model. The designer is then left with a dilemma: spend time building 

a new model, or abandon the changes and revise the old model. Similar 

dilemmas exist in software engineering. Despite these shared concerns, 

Robert Woodbury (2010, 66) states that there is currently “little explicit 

connection” between the practice of software engineering and the practice 

of parametric modelling.

In this thesis I consider, using a reflective practice methodology, 

how software engineering may inform parametric modelling. Across 

three case studies I take aspects of the software engineering body of 

knowledge (language paradigms; structured programming; and interactive 

programming) and apply them to the design of parametric models for 

the Sagrada Família, the Dermoid pavilion, and the Responsive Acoustic 

Surface. In doing so I establish three new parametric modelling methods.

The contribution of this research is to show there are connections between 

the practice of software engineering and the practice of parametric 

modelling. These include the following:

•	 Shared challenges: Both practices involve unexpected changes 

occurring within the rigid logic of computation.

•	 Shared research methods: Research methods from software 

engineering apply to the study of parametric modelling.

•	 Shared practices: The software engineering body of knowledge 

seems to offer a proven pathway for improving the practice of 

parametric modelling.

These connections signal that software engineering is an underrepresented 

and important precedent for architects using parametric models; a finding 

that has implications for how parametric modelling is taught, how 

parametric models are integrated with practice, and for how researchers 

study and discuss parametric modelling.
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1	 Introduction

Timothy Johnson (fig. 1; Lincoln Laboratory 1964) drags a pen across a 

flickering screen and, for a brief instance, it looks as though he is drawing. 

For most people in 1964, this demonstration of Ivan Sutherland’s (1963) 

Sketchpad will be the first time they have seen someone interact with a 

computer. Johnson’s actions initially resemble a designer at a drawing 

board, the ink replaced with light, the impression of the computer’s 

similarity to the drawing board only broken when Johnson creates a 

misshapen trapezium (fig. 2) and defiantly states “I shouldn’t be required 

to draw the exact shape to begin with” (Lincoln Laboratory 1964, 9:00). 

He then obscures the screen by reaching for a button to his left (fig. 3). 

When Johnson sits back down he reveals, with a hint of magic, that the 

trapezium has transformed into a rectangle (fig. 4). The sleight of hand 

underlying this trick is that when Johnson appears to be drawing he is 

actually communicating a set of geometric relationships to the computer. 

These relationships form a specific type of computer program, known 

today as a parametric model. Changes to the model or to its input variables 

propagate through explicit functions in the computer to change the model’s 

output automatically, which allows trapeziums to transform into squares, 

and allows designers to begin drawing before they know the exact shape.

Figure 1: In a frame 
from the Lincoln 
Laboratory (1964) 
documentary, Timothy 
Johnson draws a line 
with Sketchpad’s 
light-pen.
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Figure 2: A trapezium 
drawn in Sketchpad.

Figure 3: Timothy 
Johnson reaches for 
a button (off camera) 
to invoke Sketchpad’s 
parametric engine.

Figure 4: The model’s 
explicit functions create 
orthogonal angles 
between the trapezium’s 
sides, transforming it 
into a rectangle.
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When Sutherland created Sketchpad, it was optimistic to think designers 

would gain flexibility by transforming a job a draftsperson did with a 

sheet of paper into a job a software engineer (Timothy Johnson) did with 

a computer large enough to require its own roof (the TX-2). Yet, fifty years 

later, architects sit at computers and increasingly do exactly what Johnson 

was doing all those years ago. It is a difficult job. I will reveal in this thesis 

that while parametric models offer the flexibility to accommodate change, 

there is a tendency for changes to break parametric models unexpectedly. 

These problems resemble problems software engineers encounter when 

programming; problems that have led designers as far back as 1993 to 

declare that parametric modelling is “more similar to programming than 

to conventional design” (Weisberg 2008, 16.12). Yet despite the shared 

concerns with accommodating changes, there is currently, according to 

Robert Woodbury (2010, 66), “little explicit connection” between the 

practice of parametric modelling and the practice of software engineering. 

Johnson’s sleight of hand persists. In this thesis I seek to connect these 

two practices by considering whether parametric models can be made more 

flexible through the application of knowledge from software engineering.

1.1	 Problems with Flexibility

Design is a journey traced by ever changing representations. “The designer 

sets off,” Nigel Cross (2006, 8) argues, “to explore, to discover something 

new, rather than to return with yet another example of the already 

familiar.” Many others share Cross’s view that design is not simply a leap 

into a premeditated solution but rather a messy journey necessitated by 

uncertainty and characterised by iteration (Schön 1983; Lawson 2005; 

Brown 2009). Key facilitators of this process are external representations, 

which serve as points of reflection along the way (Schön  1983). 

Cross (2011, 12) contends that these representations are necessary since 

“designing, it seems, is difficult to conduct by purely internal mental 

processes.” Yet representations take time to produce, and they take time 

to modify. Thus, as change inevitably occurs whist designing, the designer 

necessarily spends time changing or creating new representations.
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From the very beginning, the digitisation of architecture has concerned 

itself with facilitating changes to design representations. When Sutherland 

created Sketchpad, he spent considerable time considering how a “change 

of a [model’s] critical part will automatically result in appropriate changes 

to related parts” (Sutherland 1963, 22). In today’s lexicon this could be 

described as parametric, meaning the geometry (the related part) is an 

explicit function of a set of parameters (the critical part). As Johnson 

demonstrated, a designer using Sketchpad could change their mind 

about the relationship between objects (the critical part) and Sketchpad 

would automatically adapt the objects (the related parts) to satisfy this 

relationship. For example, a designer might decide that two sides of 

trapezium should be orthogonal (as Johnson does in figure 2). The designer 

then modifies the parameter controlling line relationships, and this 

change filters through the explicit functions in Sketchpad’s parametric 

engine to trigger the automatic remodelling of the lines so that they meet 

orthogonally; the trapezium now a square. By making geometric models 

seemingly easy to change, Sketchpad and the introduction of computer-

aided design promised to reduce the hours designers spent manually 

changing or creating new representations.

It is now almost fifty years after Sketchpad and computers have replaced 

the drawing boards they once imitated. Many new ways of generating 

parametric models have been developed: from history-based modellers 

(CATIA, SolidWorks, and Pro/Engineer), to visual scripts (Grasshopper, 

GenerativeComponents, and Houdini) and textual programming 

environments (the scripting interfaces to most CAD programs). 

The commonality of all these parametric modelling environments is the 

ability for designers to modify parameters and relationships that trigger 

the transformation of related model parts. This is now a popular way to 

create and modify digital models. Fifty years since Sketchpad, Robert 

Aish and Robert Woodbury (2005, 151) say the hope still remains that 

parametric modelling will “reduce the time and effort required for change 

and reuse.”
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While it is alluring to think of a design representation flexible enough 

to reduce time spent remodelling, the reality – a reality commonly not 

addressed – is that parametric models are often quite brittle. Frequently 

I find my models have grown so tangled they can no longer accommodate 

even the most trivial change. Often I just start again. I am not alone 

in experiencing this: I see my students work themselves into the same 

situation, I listen to colleagues complain about their models breaking, and 

I read firsthand accounts from architects detailing the same problem.

When the topology of a project changes the [parametric] model 

generally needs to be remade.

David Gerber 2007, 205

A designer might say I want to move and twist this wall, but you did 

not foresee that move and there is no parameter to accommodate the 

change. It then unravels your [parametric model]. Many times you will 

have to start all over again.

Rick Smith 2007, 2

To edit the relational graph or remodel completely is also commonplace.

Jane Burry 2007, 622

Changes required by the design team were of such a disruptive nature 

that the parametric model schema could not cope with them. [They 

had to rebuild part of the model.]

Dominik Holzer, Richard Hough, and Mark Burry 2007, 639

[Parametric modelling] may require additional effort, may increase 

complexity of local design decisions and increases the number of items 

to which attention must be paid in task completion.

Robert Aish and Robert Woodbury 2005, 151

[If a critical change is made] there is no solution other than to 

completely disassemble the model and restart at the critical decision.

Mark Burry 1996, 78
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These authors collectively demonstrate that parametric models used in 

practice have a propensity for inflexibility, which sometimes leads the 

model to break (these quotes and their implications are examined further 

in chapter 2). Often the only way forward is rebuilding the brittle part of 

the model. In the best case, this causes an unexpected delay to the project. 

In  the worst case, the designer is dissuaded from making the change 

and ends up with a design that was not so much created in a parametric 

model as it was created for the limitations of a parametric model. Despite 

fifty years of refinement and the increased adoption of parametric 

modelling, inflexible models still cause delays in architectural practice, 

hinder collaboration, and discourage designers from making changes to 

their models.

1.2	 The Flexibility of Code

In The Design of Design the Turing award-winning software engineer, 

Frederick Brooks (2010), frequently cites Schön and Cross as he positions 

programming as a design discipline. Brooks argues that programming, like 

other forms of design, is not simply a leap into a premeditated solution 

but rather a messy journey necessitated by uncertainty and characterised 

by iteration. During this process software engineers represent ideas with 

computer code, which primarily contains relationships expressed in a 

logical syntax. As these networks of relationships develop during the 

design process, they can become brittle and unexpectedly break. These 

moments of inflexibility echo moments of inflexibility exhibited by some 

parametric models. For a period in the 1960s, scientists feared these 

brittle breakages would be insurmountable and the limits of computation 

would not be computer speed but rather the cognition of the programmers 

creating and maintaining software (Naur and Randell 1968, chap. 7.1).

Software engineers still struggle with inflexibility. While it is difficult to 

get precise data, some industry surveys have suggested only 14% to 42% of 

software projects were successful in 2012 (The Standish Group 2012; The 

Standish Group 2009; Eveleens and Verhoef 2010). In a discipline where 

the “costs of materials and fabrication are nil,” Young and Faulk (2010, 439) 

argue that the primary determinants of a programmer’s success become 

“the essential challenges of complexity and the cost of design.” Accordingly, 

the Software Engineering Body of Knowledge Version 1.0 (Hilburn et al. 1999) 
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– which categorises the expected knowledge of a programmer – is filled 

with management strategies, algorithms and data structures, problem 

decomposition tactics, programming paradigms, and coding interfaces to 

reduce both the complexity and the cost of design. This is the cumulative 

wisdom from years of struggles with inflexibility and these are the issues 

programmers talk about.

In contrast, architects are told by Mark Gage (2011, 1), the assistant dean 

at the Yale School of Architecture, to “use computation, but stop fucking 

talking about it.” Gage (2011, 1) goes on to parody the way architects talk, 

justifying computational projects as coming from “secret code found in 

the lost book of the Bible handed to [them by their] Merovingian great 

grandmother” (2011, 1) or deriving from “a semester producing the 

most intricate parametric network ever seen by man” (2011, 1). While 

there is obviously an element of truth to Gage’s polemic caricature, it 

does not necessarily support his conclusion that architects should stop 

talking about computation. Robert Woodbury (2010, 66) has pointed 

out, “parametric modelers do have common cause with professional 

programmers” but “there is little explicit connection between them.” 

From this point of view, the problem is not so much that architects are 

talking about computation, but rather that architects are typically talking 

about computation in fairly extraneous terms compared to the exchanges 

characteristic of software engineers.

In this thesis I explore whether the debates surrounding the design of 

software are applicable to the design of flexible parametric models. 

I position change as an essential, desirable, and unavoidable aspect of both 

software design and parametric design – a quality both disciplines stiffly 

embrace in their practice. The relationship between the two disciplines is 

traversed in my research through three case studies, which take methods 

inspired from software engineering and apply them to the creation of 

parametric models. These three case studies map a new territory for 

architects; territory that concerns the way parametric models themselves 

are structured and considers what architects can learn from software 

engineers to improve the flexibility of their parametric models in the 

face of change.
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1.3	 Aim

The aim of this research is to explore whether the design of software can inform 

the design of flexible parametric models.

In addressing this aim, my thesis occupies what Woodbury (2010, 66) has 

identified as the “common ground” between programming and parametric 

modelling, a space where currently “little explicit connection” exists 

between either side. In this thesis I consider how practices from software 

engineering may connect with practices of parametric modelling, which I 

do by applying software engineering concepts to the creation of parametric 

models. In chapter 3 I discuss which software engineering concepts may 

also be applicable to the practice of parametric modelling. I then select 

three of these concepts and apply them respectively to three parametric 

architecture projects in chapters 5, 6, & 7. The concluding chapters 

(chap. 8 & 9) bring these case studies together to consider how the design 

of software may inform the design of flexible parametric models and to 

consider the consequences of this relationship for architecture generally.

A limit of my aim is that it explores just one type of flexible digital 

modelling: parametric modelling. Not all architects use parametric models 

and for those that do, parametric modelling is but one technique in an 

array of modelling methods available to them. Flexibility may also be 

achieved through other methods like Building Information Modelling 

(BIM). The many advocates of BIM contend that BIM reduces rework 

(which creates flexibility) by creating a centralised repository of data that 

all representations draw upon; change the data once and theoretically 

everything updates (Eastman et al. 2011, 15-26). My research focuses 

on parametric modelling due to my experience with it and due to the 

opportunities for improvement this presents. However focusing solely 

on parametric modelling is not intended to be antagonistic to the other 

modelling methods. On the contrary, since architects often integrate 

modelling methods together, improvements to the practice of parametric 

modelling could manifest themselves as improved parametric features for 

other flexible representations like BIM.
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A Note on Language

Within this aim, and throughout this thesis, I frequently use the terms 

parametric model and software engineering. Both are contentious. To help 

clarify my intended meaning I will briefly pause here and explain why I 

have included these terms.

Architects assign a range of meanings to the phrase parametric model. 

A number of definitions have been advanced that range from style-

based classifications, to software zealotism, to arguing that all design is 

inherently parametric. Neil Leach claims that the disagreement is so fierce 

“few people in the West working at the forefront of computation use the 

term parametric” (Leach and Schumacher 2012). I however have chosen to 

use parametric in this thesis because parametric has a very precise historic 

meaning. The range of contemporary definitions are an illustration of how 

the modern conception of parametric modelling has shifted. I explore these 

shifts further in chapter 2. In the same chapter I explain the definition I 

use in this thesis: a parametric model is set of equations that express a 

geometric model as explicit functions of a number of parameters.

“The phrase software engineering was deliberately chosen as being 

provocative” write the authors who coined the term at the 1968 meeting 

of the NATO science committee (Naur and Randell 1968, 13). The original 

intention was to ground the practice of manufacturing software in a 

theoretical foundation similar to other engineering disciplines (Naur 

and Randell 1968, 13). Many have since argued that engineering is an 

inappropriate discipline to base the identity of programming upon. This 

has led Tom DeMarco (2009, 95) to declare “software engineering is an 

idea whose time has come and gone.” Others have said the manufacture 

of software is more like a design discipline (Brooks 2010), or a craft (Seibel 

2009), or an art (Knuth 1968). It lies outside the scope of my research to 

resolve this forty-year old debate. In this thesis I use the phrase software 

engineering not because it is an apt analogy for what programmers do but 

rather because software engineering is a term still a widely used to denote 

the body of knowledge concerning the creation of software.
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1.4	 Methodology

Previous research indicates there are methodological challenges in 

developing a convincing understanding of flexible parametric model design. 

When software engineers have sought similar understandings of software 

design, the researchers have shown a tendency to seek elegant, repeatable, 

statistical studies – perhaps owing to the mathematical and scientific 

origins of computer science (Menzies and Shull 2010, 3). Achieving 

this elegance, repeatability, and statistical confidence often requires the 

simplification of complicated circumstances. Turing award-winner Edsger 

Dijkstra (1970, 1) has stated that these simplifications inevitably lead 

computer scientists to conclude with the assumption: “when faced with a 

program a thousand times as large, you compose it in the same way.” For 

certain problems this extrapolation works, but on problems concerning 

software flexibility and maintainability, Dijkstra (1970, 7) argues idealised 

experiments fail to capture the paramount issues of “complexity, of 

magnitude and avoiding its bastard chaos.” In other words, simplifying, 

controlling, and isolating the issues of practice with a positivist or 

post-positivist perspective may generate convincing empirical evidence 

for software engineering researchers, but there is reason to suspect the 

simplifications will also abstract away the crucial parts of what needs to 

be observed to produce convincing evidence for practitioners.

With complicated interrelationships and the pressures of practice likely to 

be important components of this research, a primary consideration is how 

to avoid obscuring the nuances of practice whilst observing it. One method 

is to conduct the investigation from within practice, a method Schön (1983) 

describes as reflection in action and reflection on action. This method has a 

constructivist worldview where, according to Creswell and Clark (2007, 24), 

multiple observations taken from multiple perspectives build inductively 

towards “patterns, theories, and generalizations.” While this may be closer 

to social science than the hard science origins of software engineering, 

Andrew Ko (2010, 60) argues such an approach is “useful in any setting 

where you don’t know the entire universe of possible answers to a question. 

And in software engineering, when is that not the case?” The challenges of 

understanding practice therefore becomes one of generalising results that 

are not necessarily representative because they are based on observations 

of projects that cannot be simplified, controlled, and isolated. To help 
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mitigate these challenges my research draws upon multiple research 

instruments to make the observations, and multiple case studies to 

triangulate the results.

1.	 Multiple case studies: By employing multiple case studies, the 

anomalies of one can be balanced by the rest. Robert Stake (2005, 446) 

calls this a “collective case study” where multiple projects “are chosen 

because it is believed that understanding them will lead to better 

understanding, and perhaps better theorising, about a still larger 

collection of cases.” Chapter 4 discusses in greater detail the criteria 

for selecting the three case studies.

2.	 Multiple research instruments: A research instrument, as defined by 

David Evan and Paul Gruba (2002, 85), is any technique a “scientist 

might use to carry out their ‘own work’.” Typical examples include 

interviews, observations, and surveys. Unfortunately there is no 

research instrument to measure parametric flexibility. Chapter  4 

investigates how various qualitative and quantitative research 

instruments, many borrowed from software engineering, can 

aid observations of parametric flexibility. These are combined in 

various ways within the case studies to present a fuller picture of the 

various projects.

Whilst this triangulation of observations through a mix of research 

instruments is not as precise as a controlled experiment, it does aid 

in observing the influence of actions undertaken in the midst of large, 

messy, and complicated practice based projects – the situations where the 

flexibility of parametric models is critical.

I should also note (prior to discussing the thesis structure) that the chapter 

sequence in this thesis does not trace how I conducted the research. As 

a work of reflective practice I gathered the evidence of my research in a 

process resembling Kemmis and McTaggart’s (1982) cycle of “planning, 

acting, observing and reflecting” on actions in practice. In this sense 

my thesis represents a final extended reflection on my prior cycles of 

research. I use three of these cycles as case studies but there are also many 

incomplete and tangential cycles that are left unstated. As such, my thesis 

structure does not mirror my research process, and instead it follows a 

logic intended to contextualise the case studies in order to reflect upon the 

relationship between software engineering and parametric model design.
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1.5	 Thesis Structure

This thesis is divided into nine chapters: the current introduction, 

three background chapters, three case study chapters, and two 

concluding chapters.

In the following chapter (chap. 2) I expand upon the challenges associated 

with parametric modelling that I have outlined in this introduction. I first 

examine the various definitions of parametric modelling and consider 

how these frame an understanding of what a parametric model is. I go 

on to reveal the numerous challenges architects have faced when using 

parametric models in practice. Aggregated together, these accounts reveal 

an array of problems that tend to be overlooked in many of the discussions 

around parametric modelling.

In chapter  3 I contrast the challenges of parametric modelling to the 

challenges associated with software engineering. I introduce the body of 

knowledge associated with software engineering and hypothesise about 

which knowledge areas may also help the practice of parametric modelling.

In chapter  4 I discuss a research method for applying aspects of the 

software engineering body of knowledge to the creation of various 

parametric models. I outline criteria for selecting the case studies and I 

discuss how a variety of quantitative and qualitative metrics can be used 

to observe parametric flexibility.

Each of the subsequent three chapters is a case study that takes an area 

of knowledge identified in chapter 3 and observes impact on parametric 

modelling with techniques from chapter 4.

In chapter 5 I explore the differences between creating a parametric model 

with a logic programming paradigm compared to creating a model with a 

more conventional dataflow paradigm. The logic programming paradigm 

enables the reversal of the parametric process by turning static geometry 

into a parametric model. However, outside this niche application, logic 

programming proves to be a difficult modelling interface.
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In chapter 6 I consider how the principles of structured programming apply 

to the organisation of parametric models. Splitting models into hierarchies 

of modules appears to increase the legibility of the models and improve 

model reuse. Perhaps more importantly, the structure seemed to allow 

ordinarily pivotal decisions to be made much later in the design process 

– in some cases, moments prior to construction.

In chapter 7 I draw upon innovations in software engineering Integrated 

Development Environments (IDEs) to create an interactive programming 

interface for architects. The interface enables designers to modify their 

code and immediately see the geometry of the model change. This case 

study positions the scripting environment itself as a important site of 

innovation, a site where many programmers have already provided 

numerous useful innovations.

These three chapters feed into the discussion (chap. 8) and conclusion 

(chap. 9). I argue there is a close relationship between software engineering 

and parametric modelling. This relationship has implications for how 

parametric modelling is taught, for how parametric modelling is integrated 

in practice, and for how we discuss parametric modelling.
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2	 The Challenges 
of Parametric 
Modelling

Neil Leach observes that “many people have misgivings about the term 

parametric” (Leach and Schumacher 2012). Whilst writing this thesis I 

contemplated avoiding any controversy by replacing parametric with a 

less disputed synonym: associative geometry, scripting, flexible modelling, 

algorithmic design. I would not be the first author to shy away from a 

term that others, like Patrik Schumacher (2010), have declared “war” over.1 

These battles and misgivings surrounding the term parametric are relatively 

recent. They signify, if nothing else, the growing importance of parametric 

modelling within the discourse of architecture. For this reason I use the 

term parametric throughout this thesis – not because I want to go to war, 

but because the misgivings about the term parametric helps to explain the 

misgivings of using parametric models.

Owen Hatherley (2010) argues that the debates surrounding parametric 

modelling stem from a shift in definition. The term parametric was 

co-opted, says Hatherley (2010), from its provenance in the “digital 

underground” by “arrivistes” who have jostled to claim the term as 

their own whilst parametric design ascended towards “mainstream 

acceptance.” Hatherley cites Schumacher as an example of an arriviste, 

owing to Schumacher’s (2008) infamous claim that parametric design is a 

“contemporary architectural style that has achieved pervasive hegemony 

within the contemporary architectural avant-garde.” Hatherley (2010) goes 

on to quote my previous articles – where I have argued that parametric 

design is not defined by an architectural style (Davis 2010) – as “perhaps 

the nearest proof that there really is an avant-garde [of parametric design] 

although perhaps Schumacher has little to do with it.” I will make a similar 

argument in this chapter by showing how the definition of parametric has 

1	 Neil Leach claims that, as a result of the misgivings around the term parametric, “few 
people in the West working at the forefront of computation use the term parametric 
or parametricism, although it is still popular in China for some reason” (Leach and 
Schumacher 2012).
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shifted and, in doing so, obscured many of the challenges associated with 

parametric modelling.

I begin this chapter by exploring the various definitions of parametric 

modelling. I argue that there is a propensity to define parametric modelling 

in terms of the model’s outputs even though the defining feature of a 

parametric model is not the outputs but rather the need to construct and 

maintain relationships associated with the model. I go on to explore why 

architects are attracted to this seemingly unintuitive design process and 

I investigate the difficulties architects encounter with using parametric 

models. I argue that these difficulties are not necessarily obvious if 

parametric modelling is only defined and understood in terms of the 

model’s outputs. Accordingly, I spend most of this chapter discussing 

the challenges of defining and using parametric models, both as a way to 

position my research and as a way to highlight under-represented parts 

of the discourse that are important in understanding why architects 

sometimes find parametric modelling challenging.

2.1	 What is Parametric 

Modelling?

“What is parametric modelling?” is the title that heads the second 

chapter in Robert Woodbury’s (2010) book Elements of Parametric Design. 

Woodbury dedicates twelve pages to the question, but instead of directly 

answering the question he spends most of these pages explaining the 

workings of forward-propagating parametric models. Woodbury’s most 

forthright answer appears on the chapter’s first page (fig. 5): “parametric 

modelling introduces fundamental change: ‘marks’, that is, parts of the 

design, relate and change together in a coordinated way” (Woodbury 

2010, 11). But Woodbury never pauses to explain how relating marks 

together differs from the relationships found in a plethora of alternative 

modelling methods, notably BIM. This is not to chastise Woodbury, for 

Elements of Parametric Design is one of the seminal books on parametric 

modelling, but this is to highlight the difficulty even experts have in 

articulately answering basic questions like what is parametric modelling?



Figure 5: The eleventh 
page from Robert 
Woodbury’s (2010) 
Elements of Parametric 
Design. Woodbury asks 
“what is parametric 
modelling?” but never 
quite gives the answer.
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Figure 6: Stadium 
designs by Luigi 
Moretti from the 1960 
Parametric Architecture 
exhibition at the Twelfth 
Milan Triennial. Each 
stadium derives from 
a parametric model 
consisting of nineteen 
parameters. Top: The 
plans for stadium 
version M and N showing 
the “equi-desirability” 
curves (Converso and 
Bonatti 2006, 243) 
Bottom: A model of 
stadium N.
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Defining what parametric modelling is and what makes it unique, is an 

important first step towards identifying the idiosyncratic challenges 

parametric models present. In the following pages I traverse a range of 

definitions that various architects have put forward: from the historic 

definition of parametric, through to the claims that all design is parametric, 

and that either change, tooling, or parametricism defines parametric. In 

doing so I make the case that many contemporary definitions tend to 

privilege what parametric models do (in terms of model behaviour or 

stylistic outcomes) but that it is how parametric models come to be (through 

the construction and maintenance of relationships) that distinguishes 

parametric modelling from other forms of architectural representation.

A Historic Definition

The term parametric originates in mathematics but there is debate as to 

when designers initially began using the word. David Gerber (2007, 73), 

in his doctoral thesis Parametric Practice, credits Maurice Ruiter for 

first using the term in a paper from 1988 entitled Parametric Design.2 

1988 was also the year Parametric Technology Corporation (founded by 

mathematician Samuel Geisberg in 1985) released the first commercially 

successful parametric modelling software, Pro/ENGINEER (Weisberg 

2008, 16.5). But Robert Stiles (2006) argues that the real provenance of 

parametric was a few decades earlier, in the 1940s’ writings of architect 

Luigi Moretti (Bucci and Mulazzani 2000, 21). Moretti (1971, 207) wrote 

extensively about “parametric architecture,” which he defines as the study 

of architecture systems with the goal of “defining the relationships between 

the dimensions dependent upon the various parameters.” Moretti uses the 

design of a stadium as an example, explaining how the stadium’s form can 

derive from nineteen parameters concerning things like viewing angles 

and the economic cost of concrete (Moretti 1971, 207). Versions of a 

parametric stadium designed by Moretti (fig. 6) were presented as part 

of his Parametric Architecture exhibition at the Twelfth Milan Triennial 

2	 Gerber claims Ruiter’s paper was published in Advances in Computer Graphics III (1988). 
When I looked at this book, none of the papers were titled Parametric Design and none of 
the papers were written by Ruiter (he was the editor not writer). As best I can tell, there 
never was a paper titled Parametric Design produced in 1988. The first reference I can 
find to Ruiter’s supposed paper is in the bibliography of Javier Monedero’s 1997 paper, 
Parametric Design: A Review and Some Experiences. It is unclear why Monedero included 
the seemingly incorrect citation since he never made reference to it in the text of his 
paper. As an aside: the word parametric does appear four times in Advances in Computer 
Graphics III – on pages 34, 218, 224, & 269 – which indicates that the use of parametric 
in relation to design was not novel at the time.
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in 1960 (Bucci and Mulazzani 2000, 114). In the five years following the 

exhibition, between 1960 and 1965, Moretti designed the Watergate 

Complex, which is “believed to be the first major construction job to make 

significant use of computers” (Livingston 2002). The Watergate Complex 

is now better known for the wiretapping scandal that took place there 

and Moretti is “scarcely discussed” (Stiles 2006, 15) – even by the many 

architects who today use computers to create parametric models in the 

manner Moretti helped pioneer.

Moretti did not fear obscurity as much as he feared the incorrect use of 

mathematical terms like parametric. He wrote to his friend Roisecco that 

“inaccuracy [regarding mathematical terms] is, in truth, scarier than the 

ignorance before [when architects knew of neither the terms nor Moretti]” 

(Moretti 1971, 206). Parametric has a long history in mathematics and 

the earliest examples I can find of parametric being used to describe three-

dimensional models comes almost one hundred years prior to Moretti’s 

writings. One example is James Dana’s 1837 paper On the Drawing of 

Figures of Crystals (other examples from the period include: Leslie 1821; 

Earnshaw 1839).3 In the paper Dana explains the general steps for drawing 

a range of crystals and provisions for variations using language laced with 

parameters, variables, and ratios. For instance, in step eighteen Dana tells 

the reader to inscribe a parametric plane on a prism:

If the plane to be introduced were 4P2 the parametric ratio of which 

is 4:2:1, we should in the same manner mark off 4 parts of e, 2 of ē 

and 1 of ë.

Dana 1837, 42

In this quote Dana is describing the parametric relationship between three 

parameters of the plane (4:2:1) and the respective division of lines e, ē, 

and ë. The rest of the twenty-page paper possesses similar statements that 

explain how various parameters filter through long equations to affect the 

3	 By searching for parametric in Google Ngrams (http://books.google.com/ngrams/) I 
was able to find the earliest occurrences of parametric from the collection of books that 
Google has scanned. While James Dana (1837) is one of the more compelling results, 
other examples include: Samuel Earnshaw (1839, 102), who wrote about “hyperbolic 
parametric surfaces” deformed by lines of force in a paper that gave rise to Earnshaw’s 
theorem; and Sir John Leslie (1821, 390), who proved the self-similarity of catenary 
curves using “parametric circles” in his book on geometric analysis. Google has scanned 
only a limited collection of books so there may be even earlier examples that were not 
returned in these searches. Nevertheless, Dana’s writings in 1837 significantly predate 
any claims I have found in various histories of parametric design as to the first use of 
the term parametric in relation to drawing.



Figure 7: Instances of 
James Dana’s crystal 
drawings. Above: Setting 
up the coordinate system 
(Dana 1837, 41). Below: 
Impact of changing 
the edge chamfer ratio 
(Dana 1837, 43).



21

drawing of assorted crystals. Dana’s crystal equations resemble those that 

would be used by architects 175 years later to develop parametric models 

of buildings, engendering them with what Moretti (1957, 184) has called 

(incidentally) a “crystalline splendour.”

Parametric is given no special significance in Dana’s writing. Dana does 

not describe his drawings as parametric, nor does he claim, as Schumacher 

(2009a, 15) later would, that designing with parametric equations “justifies 

the enunciation of a new style in the sense of an epochal phenomenon.” 

Rather, Dana uses parametric in its original mathematical sense, a 

word given no more emphasis than other technical terms like parallel, 

intersection, and plane.

When used by Dana in 1837, or by mathematicians today, parametric 

signifies what the Concise Encyclopedia of Mathematics calls a “set of 

equations that express a set of quantities as explicit functions of a number 

of independent variables, known as ‘parameters’” (Weisstein 2003, 2150).4 

This definition sets forth two critical criteria:

1.	 A parametric equation expresses “a set of quantities” with a number 

of parameters5.

2.	 The outcomes (the set of quantities) are related to the parameters 

through “explicit functions”6. This is an important point of contention 

in later definitions since some contemporary architects suggest that 

correlations constitute parametric relationships.

4	 This definition is consistent with definitions in other mathematical dictionaries and 
encyclopedias. I have chosen to cite from the Concise Encyclopedia of Mathematics as the 
editor, Eric Weisstein (who is also the chief editor of Wolfram Mathworld) is considered 
an authoritative source.

5	 Parameter can have a number of meanings, even when used by mathematicians. The 
grammarian James Kilpatrick (1984, 211-12) quotes a letter he received from R. E. 
Shipley: “With no apparent rationale, nor even a hint of reasonable extension of its use 
in mathematics, parameter has been manifestly bastardized, or worse yet, wordnapped 
into having meanings of consideration, factor, variable, influence, interaction, amount, 
measurement, quantity, quality, property, cause, effect, modification, alteration, 
computation etc., etc. The word has come to be endowed with ‘multi-ambiguous non-
specificity’.” In the Concise Encyclopedia of Mathematics (Weisstein 2003, 2150), the term 
parameter used in the context of a parametric equation means an “independent variable.” 
That is, a variable whose value does not depend on any other part of the equation (the 
prefix para- being Greek for beside or subsidiary).

6	 An explicit function is a function whose output value is given explicitly in terms of 
independent variables. For example, the equation x∙x + y∙y = 1 is the implicit function 
for a circle. The function is implicit since the outputs (x and y) are defined in terms of 
one another. To make the function explicit, x and y have been defined in terms of an 
independent variable. Thus, the explicit function of a circle becomes: x = cos(t), y = sin(t). 
By a similar token, saying that ‘x is roughly twice as large as t’ is not an explicit function 
since there is ambiguity regarding the exact relationship between the variables t and x 
(the relationship is non-explicit).
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These two formulae meet the criterion of a parametric equation. 

Firstly, they express a set of quantities (in this case an x quantity and 

a y quantity) in terms of a number of parameters (a, which controls the 

shape of the curve; and t, which controls where along the curve the point 

occurs). Secondly, the outcomes (x & y) are related to the parameters (a 

& t) through explicit functions (there is no ambiguity in the relationships 

between these variables). This is the origin of the term parametric: a set 

of quantities expressed as an explicit function of a number of parameters.

All Design is Parametric

Since Dana’s (1837) parametric crystal drawings 175 years ago, 

architects have gradually begun using both parametric models and the 

term parametric.7 Early examples include Antoni Gaudí using a hanging 

chain model to derive the form of Colònia Güell at the turn of the 

twentieth-century8 (M. Burry 2011, 231) and Frei Otto similarly using 

physical parametric models as a form finding technique beginning in the 

1950s (Otto and Rasch 1996). Slightly after Moretti held his Parametric 

Architecture exhibition in 1960 (Bucci and Mulazzani 2000, 114), 

Ivan Sutherland (1963) created the first parametric software, Sketchpad. 

However, it was not until Parametric Technology Corporation released 

Pro/ENGINEER in 1988 that parametric modelling software became 

commercially viable (Weisberg 2008, 16.10), and it took at least another 

decade for parametric modelling software to be specifically designed for 

architects. Today architects craft parametric models in a range of software 

7	 I have elected not to write a complete history of parametric modelling since doing so 
would not contribute significantly to the argument developed in the remainder of this 
thesis. For those interested, I recommend Weisberg’s (2008) detailed account of early 
CAD software and Gerber’s (2007) chapter on precedents to parametric practice.

8	 A hanging chain has at least four parameters: its length, its weight, and the two points 
it is attached to. Left to hang under the force of gravity, the chain makes a curved shape. 
This curve is an explicit function of the chain’s parameters with the added property that 
when inverted the curve stands in pure compression. While there is no computer, the 
hanging chain is a parametric model due to the presence of parameters that control a 
shape derived from an explicit function (in this case calculated by gravity).

An example of a parametric equation is the formulae that define a catenary 

curve:
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environments: from history-based modellers9, to visual scripts10, physical 

modelling11, and textual programming environments12.

While one could argue that architects have spent decades gradually 

adopting parametric modelling, some have argued that architects have 

always produced parametric models since all design, by definition, derives 

from parameters. This claim has been put forward by several authors, 

including David Gerber in his doctoral thesis on Parametric Practices where 

he contends:

It must be stated that architectural design is inherently a 

‘parametric’ process, and that the architect has always operated in a 

‘parametric fashion’.

Gerber 2007, 54

The same argument has been made by Robert Aish and Robert Woodbury:

Parametric modelling is not new: building components have been 

adapted to context for centuries.

Aish and Woodbury 2005, 152

In a similar vein, Mark Burry rhetorically asks whether the opposite is true, 

whether non-parametric design exists:

‘Parametric design’ is tantamount to a sine qua non; what exactly is 

non-parametric design?

M. Burry 2011, 18

Roland Hudson holds a similar opinion and opens his doctoral thesis, 

Strategies for Parametric Design in Architecture, with the sentence:

This thesis begins with the assertion that all design is parametric.

Hudson 2010, 18

9	 History-based modellers track how the designer creates geometry, allowing the designer 
to make changes later. Examples include: CATIA, SolidWorks, and Pro/Engineer.

10	 Visual scripts resemble flowcharts explaining how parameters generate geometry. 
Designers can manipulate the script’s inputs or the script itself to change the model. 
Examples include: Grasshopper, GenerativeComponents, and Houdini.

11	 Physical models like Gaudí’s hanging chain model and Frei Otto’s soap films use physical 
properties to calculate forms based on a set of parameters.

12	 There are scripting interfaces included with most CAD programs. These allow designers 
to setup parameters and a set of explicit functions that generate geometry and other 
parametric outputs.



24

For each of these authors, the claim that ‘all design is parametric’ stems 

from the observation that all design necessarily involves parameters like 

budget, site, and material properties. While this is undoubtedly true, the 

pivotal part of a parametric equation is not the presence of parameters but 

rather that these parameters relate to outcomes through explicit functions. 

This explicit connection does not exist for all the parameters involved in a 

design project. Typically relationships between parameters and outcomes 

are correlations; the budget has a noticeable affect on the design outcome 

but normally the mechanism that links the budget to the outcome is – at 

best – ambiguous. Therefore, by interpreting parametric to mean, literally, 

design from parameters these authors downplay the importance of explicit 

relationships to parametric modelling and instead base their definition of 

parametric upon the observable interface to the model.

Change is Parametric

Another observable characteristic of a parametric model – besides the 

presence of parameters – is that the geometry changes when the parameters 

change. This leads some to claim that change is parametric. Chris Yessios, 

the founder and CEO of the modelling software FormZ, summarises the 

history of this interpretation:

Initially, a parametric definition was simply a mathematical formula 

that required values to be substituted for a few parameters in order to 

generate variations from within a family of entities. Today it is used to 

imply that the entity once generated can easily be changed.

Yessios 2003, 263

Yessios (2003, 263) acknowledges the mathematical origins of parametric 

modelling but also advances a definition couched in behavioural terms: 

the trademark behaviour of a parametric model being that it “can easily be 

changed.” Robert Woodbury (2010, 7) seems to advance a similar definition, 

beginning Elements of Parametric Design with the two sentences: “Design is 

change. Parametric modelling represents change.” This is followed shortly 

thereafter with the claim, “parametric modelling introduces fundamental 

change: ‘marks’, that is, parts of the design, relate and change together in 



25

a coordinated way” (Woodbury 2010, 11).13 Robert Aish (2011, 23) has 

similarly emphasised the importance of variation by saying a parametric 

model “directly exposes the abstract idea of geometric ‘transformation’.” 

Revit Technology Corporation14 used a similar definition in a greeting to 

visitors of the Revit website:

Para.me.tric adj. Math. A quantity or constant whose value varies with 

the circumstances of its application, as the radius line of a group of 

concentric circles, which [sic] varies with the circle under consideration.

Revit Technology Corporation 2000b (emphasis theirs)

While Revit Technology Corporation claim that their definition comes from 

mathematics, the definition in no way resembles the actual mathematical 

definitions I cited earlier. Critically, their definition overlooks the role 

of explicit functions in a parametric model, an oversight also present in 

the various definitions given by Woodbury, Aish, and Yessios. In place of 

explicit functions are notions that parametric models can be defined by the 

variation they produce. Change is an easily identifiable characteristic of a 

parametric model and one that many authors choose to define parametric 

modelling by.

Defining parametric modelling in terms of change conjures Heraclitus’s 

dictum ‘Nothing endures but change’. Although parametric models change, 

so too does practically everything else in the world, except perhaps change 

itself. Even explicit geometric models can commonly be changed through 

rotation, or scaling, or moving a mesh vertex. And more specialised 

representations, like BIM, are set up to ensure changes to the underlying 

database also change the associated models. Thus, while parametric 

models change, and while parametric models are celebrated for being able 

to change, change is hardly a unique feature of parametric modelling. By 

saying parametric modelling is change, the various authors once again 

focus on what parametric models do, without considering the unique 

qualities of how parametric models are created.

13	 Woodbury’s definition nods to Sutherland’s (1963, 22) explanation of Sketchpad’s 
behaviour, “change of a model’s critical part will automatically result in appropriate 
changes to related parts.” Of course, Sutherland was not explaining the meaning of 
parametric but rather explaining Sketchpad to an audience who had never seen a person 
interact with a computer.

14	 Revit Technology Corporation was founded by former employees of Parametric 
Technology Corporation. Their initial ambition was to create the “first parametric 
building modeler for architects and building design professionals” (RTC 2000a) although 
since their acquisition by Autodesk in 2002 they have begun branding what they do as 
Building Information Modelling (BIM).
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Tooling is Parametric

Mark Burry (2011, 8) begins Scripting Cultures by saying, “we are moving 

rapidly from an era of being aspiring expert users to one of being adept 

digital toolmakers.” Many other prominent authors describe themselves 

as toolmakers and claim that parametric models are a type of drawing 

tool (examples in key books and doctoral theses include: Aranda and 

Lasch 2005; M. Burry 2011; Fischer 2008; Gerber 2007; Hudson 2010; 

Kilian 2006; Woodbury 2010; Shelden 2002). This toolmaking analogy 

has been in use since at least 1983 when the then co-founder of Autodesk, 

John Walker (1983), made the heady charge that their actions over the 

coming year “will decide whether AutoCAD becomes synonymous with 

‘drawing tool’.” In doing so Walker attempted to position AutoCAD 

alongside analogue drawing tools like the tee-square and the drafting table, 

a task he and his competitors were largely successful at. In recent years, 

the term has been further catalysed by Benjamin Aranda and Chris Lasch’s 

book Tooling where they explain seven basic parametric recipes for what 

they call drawing tools.

Whether tooling is an appropriate descriptor for what architects do is a 

question I will leave for the discussion at the end of this thesis. For now 

I would like to pause and consider how tooling implies an answer to the 

question what is parametric modelling?

The term tooling conveys a separation between maker and user; between 

the nameless person who makes a tee-square and the designer that uses 

the tool. Aranda and Lasch (2005, 9) reinforce this division, concluding 

the introduction to Tooling by saying, “once this field [meaning the tool] 

is defined as a flexible and open space, the job of designing begins.” 

Aish (2001, 23) similarly divides the act of creating a tool and the job of 

designing when he remarks: “Software developers do not design buildings. 

Their role is to design the tools that other creative designers, architects 

and engineers use to design buildings.” The implied division between 

tool use and tool making is significant: it suggests the creation and the 

use of a parametric model is temporally separated, and perhaps even 

organisationally separated.
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The implications of this separation are eloquently (if unintentionally) 

captured by Roland Hudson (2010) in his thesis Strategies for Parametric 

Design in Architecture. Hudson (2010) draws upon many of the same 

authors quoted in this chapter, dividing them within his literature review 

under the headings “creating the model” and “exploring the design space” 

(fig. 8). This division continues as Hudson discusses six case studies of 

projects employing parametric models, talking about each parametric 

model exclusively under the heading “overview of the completed model,” 

as if creating the parametric model is separate and less relevant than using 

the model. Hudson (2010, 230-45) then concludes his research by saying 

that parametric model creation and design investigation are two separate 

activities. Hudson (2010, 245) says that a person using a parametric model 

to design ends up “refining parameter values, problem descriptions and 

the structure of the parametric model rather than suggesting substantial 

changes”. Given the categorical division underlying Hudson’s research, 

it is hard to see how he could conclude anything else; a researcher is not 

going to see substantial changes if they only look at “overviews of the 

completed model”.

Hudson’s reasoning is not abnormal. Definitions presented earlier – that all 

design is parametric or that change is parametric – show how designers can 

become fixated on what ‘completed’ parametric models do, often leaving 

out details of how parametric models are created or changed. This bias 

can create the impression of a separation between a parametric model’s 

creation and use; a separation that privileges design exploration through 

parameter manipulation and underplays the possibility of ongoing model 

development; a separation that leads Hudson and many others to say 

tooling is parametric.



Figure 8: A selection 
from the contents of 
Roland Hudson’s (2010) 
thesis Strategies for 
Parametric Design in 
Architecture. Hudson’s 
distinction between 
creating and using a 
parametric model comes 
through in his thesis 
structure: the literature 
review is split between 
alternating headings of 
“creating the model” and 
“exploring the design 
space”; and each case 
study evaluation focuses 
on the “overview of 
the completed model” 
often without discussing 
any aspect of the 
model’s creation.
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Parametricism is Parametric

When Owen Hatherley (2010) talks about arrivistes repurposing the term 

parametric, Hatherley is really talking about Patrik Schumacher (director 

of Zaha Hadid Architects). Parametric was adopted by Schumacher as a 

call to arms in his newly declared “style war” (2010) first presented as 

a “parametricist manifesto” (2008) based upon “parametric paradigma” 

(2008) and dubbed “Parametricism” (2008) at 11th Venice Architecture 

Biennale. Since then, the polemic has been refined and republished in 

countless locations, always generating much discussion.

Parametricism is a knowingly provocative notion, claiming “post-

modernism and deconstructivism were mere transitional episodes” 

(Schumacher 2010, 43) and that parametric design will be “the great new 

style after modernism” (2010, 43). Schumacher (2009a, 16) identifies 

parametricism with a set of “negative heuristics” like “avoid rigid geometric 

primitives” and “avoid juxtaposition.” He counterbalances this with a set 

of “positive heuristics” including “consider all forms to be parametrically 

malleable” and “differentiate gradually (at varying rates)” (Schumacher 

2009a, 16).

Schumacher (2009b) illustrates his parametricism heuristics almost 

exclusively with Zaha Hadid projects. When I pressed Schumacher on 

his lack references to other projects, Schumacher –  who holds a PhD 

in philosophy – said “I am a practicing architect before I am a theorist” 

(Davis 2010).  By this Schumacher does not mean that he constructs 

parametric models as practicing architect. Schumacher never writes about 

using a parametric model and I can find no evidence that Schumacher 

creates parametric models at Zaha Hadid. Rather, Schumacher’s practice 

largely consists of reviewing what other architects have produced with 

parametric models. Considering Schumacher’s perspective, it is somewhat 

understandable that he would say “the emergence of a new epochal style 

… is more important than methodological and procedural innovations via 

specific computational techniques” (Leach and Schumacher 2012). After 

all, it is the stylistic outputs that Schumacher sees, not the methodology or 

procedure. In this sense Schumacher is not too far removed from the many 

other theorists who also define parametric modelling in terms of what 

the model does. In answering the question what is parametric modelling? 

parametricism represents an extreme position, and a position many 
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architects like to distance themselves from, yet it is a position many others 

come close to in their outcome focused definitions of parametric modelling.

Modelling versus Design

In contrast to Schumacher, my thesis focuses on the methodological 

and procedural innovations required for parametric modelling instead 

of focusing on enunciating the emergence of a new epochal style of 

parametric design. The discourse surrounding parametric design (whether 

parametric design is taken as a verb to describe the process of designing with 

a parametric model, or as a noun to describe the outcomes of this process) 

seems unlikely to reach a resolution in the near future, nor does it need to. I 

will leave it for others to debate how parametric design fits into the broader 

culture of architecture; for now there is a pressing need to understand 

the technological challenges presented by parametric models. Finding 

ways to make a parametric model more flexible may have ramifications in 

terms of architectural design but the immediate ramifications will be for 

the multitudes of architects currently using parametric models in their 

practice. Thus, my research focuses almost entirely on parametric modelling 

and leaves aside the debates surrounding the design implications.

What is a Parametric Model?

The definition of a parametric model, like a parametric model itself, has 

an unsettled variability. At any particular time parametric may signify 

all of design, or only the designs that change, or tooling, or design in 

the style of parametricism. This collective disagreement exists even on 

an individual level, with many prominent authors providing different 

definitions across the span of their work (in the proceeding pages, I have 

often been able to quote the same author under different definitions of 

parametric). Unsurprisingly, architects like Patrik Schumacher have seized 

this confusion as an opportunity claim the meaning of parametric, whilst 

others have distanced themselves from the term altogether. At SIAL15 

for instance, parametric models are often referred to as flexible models 

(M. Burry 2011, 105), which is a description that emphasises – like most 

15	 The Spatial Information Architecture Laboratory (SIAL) is a research unit within the 
Royal Melbourne Institute of Technology (RMIT). My PhD is part of SIAL’s project 
Challenging the Flexibility of the Inflexible Digital Model – a title that deliberately uses 
flexible model instead of parametric model.
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definitions of parametric – what the models do rather than how the models 

were created.

The creation of the parametric model distinguishes it from other forms 

of architectural representation. Returning to the Concise Encyclopedia 

of Mathematics, a parametric equation is defined as a “set of equations 

that express a set of quantities as explicit functions of a number of 

independent variables, known as ‘parameters’” (Weisstein 2003, 2150). 

The mathematical definition can be refined by recognising that the “set of 

quantities” in the context of design representation is typically geometry 

(although not always). Thus, a parametric model can be defined as: a set of 

equations that express a geometric model as explicit functions of a number 

of parameters. This is the intended meaning when nineteenth-century 

scientists and mathematicians like James Dana (1837) refer to parts 

of their geometric drawings as parametric. This is what mathematician 

Samuel Geisberg (Teresko 1993, 28) meant when he founded Parametric 

Technology Corporation and created the first commercially successful 

parametric software. This is the definition used by Fabian Scheurer and 

Hanno Stehling (2011, 75) as well as Ipek Dino (2012, 208-10). And when 

Woodbury (2010, 11-22) describes the mechanics of a forward propagating 

parametric model in his chapter “What is Parametric Modelling?” the 

model he describes conforms to this definition. Therefore, a parametric 

model is unique, not because it has parameters (all design, by definition, 

has parameters), not because it changes (other design representations 

change), not because it is a tool or a style of architecture, a parametric 

model is unique not for what it does but rather for how it was created. A 

parametric model is created by a designer explicitly stating how outcomes 

derive from a set of parameters.

The explicit connection between parameters and the geometric model 

potentially excludes a number of model types. Dino (2012, 209) has 

argued linguistic algorithms (such as shape grammars) and biological 

algorithms (such as genetic algorithms, flocking, and cellular automata) 

tend not to be parametric because they lack explicit connections. While 

these algorithms may contain parameters, their parameters work like a 

budget in a brief; they undoubtably influence the outcome but there is no 

explicit connection between a specific parameter and a specific outcome. 

Yet the boundary between parametric and non-parametric is not clear 

cut. For instance, Sketchpad (Sutherland 1963, 110-19) has two solving 
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methods: the one-pass method, which analytically solves the explicit 

functions (Sutherland 1963, 118-19); and the relaxation method, which 

bypasses the explicit functions through numeric optimisation. Sketchpad 

seamlessly switches between the two solving methods and to an end user 

they both appear parametric even though one relies upon explicit functions 

while the other does not. Other fringe cases include BIM models where 

changes to data may trigger a set of functions that recalculate a series of 

models. Even explicit geometry has some parametric characteristics. For 

instance, the endpoint of a line could be thought of as a parameter to a 

set of functions that transform the line. While I am aware of these grey 

areas, for the remainder of this thesis I will be discussing models that are 

unambiguously parametric – models where the designer has defined the 

explicit connections between parameters and the geometry. In the next 

section I consider why a designer would want to do so.

2.2	 Why Use a 

Parametric Model?

If you were to ask an architect to describe a medium for designing 

architecture, one that fosters creativity and exploration, they would 

probably not reply ‘a set of equations that express a geometric model as 

explicit functions of a number of parameters’. Yet explicit functions and 

parameters are the medium of choice for the many architects who design 

with parametric models. Understanding why architects choose to use 

parametric models – a seemingly counterintuitive medium for creativity 

and exploration – is a crucial step towards understanding the challenges 

associated with parametric modelling.

Thinking Parametrically

Expressing design intentions with parameters and explicit functions 

requires a different way of thinking than most designers are accustomed to. 

In addition to thinking about what they are designing, architects working 

with parametric models must also think about the logical sequence of 

formulas, parameters, and relationships that explain how to create their 

designs (Aish 2005, 12; Woodbury 2010 24-25). Some dub this parametric 
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Figure 10: MacLeamy’s 
curve (2001). MacLeamy 
advocates taking the 
typical design effort and 
shifting it to an earlier 
stage of the project. In 
theory this means that 
designers are working 
when their decisions 
have the most impact 
and least associated cost.

Figure 9: Paulson’s 
curve (1976, 588). In 
the text accompanying 
this graph, Paulson talks 
about the benefits of 
making early decisions 
when the designer’s level 
of influence is high.
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thinking or algorithmic thinking. Learning to think parametrically is 

“a hard-won skill, not acquired with ease” say all but one of forty experts 

interviewed by Mark Burry (2011, 38). Although learning to design in 

such a mediated manner can be difficult, the logical precision can also 

be enjoyable for designers who relish pushing back against imposed 

constraints, and for designers who like how parametric modelling 

forces them to explicitly state (and therefore consider) every geometric 

relationship (Aish 2005, 12; M. Burry 2011, 38-39; Kilian 2006, 300-03; 

Woodbury 2010 24-25). However, the real benefit of learning to think 

parametrically comes from the cost of design changes.

The Cost of Change

In 1976 Boyd Paulson sketched a graph (fig. 9) showing that a designer’s 

level of influence over an architecture project decreases as the project 

progresses. Paulson (1976, 588) points out that the first decision a designer 

faces on any project – whether to commence the project or not – has total 

influence over the project’s future. He goes on to argue that all subsequent 

decisions have a diminishing influence and are generally more costly to 

implement. In other words: as designs become more developed, they also 

become more difficult to change. Paulson published his observations in a 

few construction management textbooks (Barrie and Paulson 1991) but 

the idea never became widely circulated.

Paulson’s graph reappeared in May 2001 at a resort in Mexico. The leaders 

from HOK (one of the world’s largest architecture firms) had gathered at 

the resort to discuss “key strategies for the future” (HOK 2012). During the 

discussions, Patrick MacLeamy presented a graph (fig. 10) showing that a 

designer has the most “ability to impact [a project’s] cost and functional 

capabilities” (MacLeamy 2010) at the start a project, and that this ability 

decreases during a project while the cost of making design changes 

increases. The graph MacLeamy presented was identical to Paulson’s. 

MacLeamy claimed the work as his own (perhaps unaware of Paulson’s 

efforts) and HOK went on to promote Paulson’s graph under the name 

MacLeamy’s curve (HOK 2012) – a name that has stuck thanks in part to 

HOK’s marketing clout.16 Two years after MacLeamy presented the graph 

16	 I am extremely grateful to Noel Carpenter for drawing my attention to Paulson’s work in 
a comment Carpenter left on a blogpost I wrote about MacLeamy (Davis 2011a). As best 
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to the leaders of HOK, MacLeamy was appointed CEO, a position he has 

held for almost a decade (HOK 2012).

As CEO of HOK and the international chair of buildingSMART17, MacLeamy 

has used his curve to champion the front-loading of architecture projects. 

MacLeamy (2010) advocates making design decisions early in the project 

(shifting the design effort forward) since his curve shows that design 

changes are less costly to make at the start of the project compared to the 

end. Paulson (1976, 591-92) drew the same conclusions from his graph 

and suggested construction knowledge should be injected earlier in the 

design process. More sophisticated examples of front-loading are given by 

MacLeamy (2010) who advocates both of the following: Integrated Project 

Delivery (IPD), which contractually amalgamates all the project parties to 

guide the design team towards viable solutions early in the project; and 

BIM, which provides a central project database to improve communication 

between team-members while also aiding early stage simulations and later 

stage project documentation. These ideas have been widely disseminated 

and MacLeamy’s conception of front-loading has informed contemporary 

architectural practice in everything from the American Institute of 

Architects (AIA 2007, 21-31) guidelines for IPD to the instruction manuals 

for Autodesk’s Revit (Read, Vandezande, and Krygiel 2012, fig. 5.7).

Discussing the cost of change may make some designers uncomfortable, 

particularly if they perceive their costly changes as valuable contributions 

to a project. However, cost in this context is a measure of the designer’s 

capacity to make change; the designer’s ability to design. Ostensibly, front-

loading should empower designers by encouraging them to act when the 

cost of change is low and their capacity to make change is high. Yet, the 

paradox of front-loading is that by forcing design decisions early in the 

project, the project becomes more developed and therefore, according to 

MacLeamy’s curve, more costly to change later on. It is this increase in 

the cost of change that should make designers uncomfortable because it 

signals a reduction in the designer’s capacity to make late changes.

I can tell, no previous research has cited Paulson when discussing MacLeamy’s curve.
17	 BuildingSMART is an influential consortium of CAD manufactures and users that 

develops open standards for describing buildings. They are perhaps best known for the 
development of the IFC standard, which facilitates interoperability in between BIM 
software.
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The introduction of parametric modelling was motivated by a desire 

to decrease the cost of change. This motivation is discussed by Samuel 

Geisberg, the founder of Parametric Technology Corporation, during an 

interview with Industry Week in 1993:

The goal is to create a system that would be flexible enough to 

encourage the engineer to easily consider a variety of designs. And 

the cost of making design changes ought to be as close to zero as 

possible. In addition, the traditional CAD/CAM software of the time 

unrealistically restricted low-cost changes to only the very front end 

of the design-engineering process.

Geisberg quoted in: Teresko 1993, 28

Geisberg’s comments suggest that instead of looking at MacLeamy’s cost 

of change curve and concluding design efforts should be shifted to the 

“very front end of the design-engineering process,” a better conclusion 

may be to shift the cost of change curve so that the “cost of making design 

changes [is] as close to zero as possible.” In theory, a parametric model 

helps lower the cost of change provided the model’s parameters and explicit 

functions require less effort to change than alternative modelling methods. 

Geisberg calls this flexibility (Teresko 1993, 28). In chapter 4 I discuss the 

various nuances of flexibility, but for now flexibility can be understood as 

a measure of the cost of design changes and, by proxy, a component of the 

designer’s capacity to design.

Flexibility makes-up the central tenet of parametric modelling. 

By maintaining a flexible model the designer can afford to make changes, 

which is important given the inevitability of change on an architecture 

project. While some changes can be anticipated and perhaps even front-

loaded, many changes come from forces outside the designer’s sphere of 

influence. For instance, the client can change the brief, politicians can 

change the legislation, and market forces can change the price of materials. 

Other changes occur because design is a knowledge generating process. 

Often it is only through iteration, exploration, and reflection that the 

problem – much less the design response – becomes known (Glegg 1969; 

Schön 1983; Lawson 2005; Cross 2006). In the face of these inevitable 

changes, the flexibility of a parametric model’s parameters and explicit 

functions makes for an alluring design medium;  one many architects 

employ to help improve the designer’s capacity to design.
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2.3	 Reported Difficulties with 

Models in Practice

While the flexibility of a parametric model purportedly helps designers 

accommodate change, there is growing evidence that this is not always 

the case. “Many times,” writes Rick Smith (2007, 2), architects working 

with parametric models are finding they have to “start all over again” once 

changes incapacitate their models. Parametric Technology Corporation 

(PTC 2008, 1) admit “this situation is fairly common” with users often 

finding that they spend “too much time re-creating designs, or can’t 

respond to unexpected changes fast enough, or [that their] design cycles 

are actually taking longer [compared to using a non-parametric model]” 

(2008, 1). A similar sentiment is expressed by the authors quoted at the 

very start of this thesis (Gerber 2007, 205; J. Burry 2007, 622; Holzer et al. 

2007, 639; Aish and Woodbury 2005, 151; M. Burry 1996, 78). In the 

following section I revisit what these authors say about the practice of 

parametric modelling and investigate the associated challenges they reveal.

Evidence of Challenges

Very few architects have spoken publicly about how they construct and 

maintain their parametric models; fewer still in a critical manner. This 

is not entirely surprising considering the relatively recent adoption of 

parametric modelling by most architects. Only in the past decade have 

the challenges of computational power, workflows, and algorithms receded 

to the point where parametric modelling has gone from an issue largely of 

theory to the subject of practice.

When architects do write about the practice parametric modelling there is 

a tendency to understate the challenges. As Thomas Fischer (2008, 245) 

laments, firsthand accounts of “failures and dead-ends … seem to be rare 

and overshadowed by the great number of post-rationalised, outcome-

focused reports on digital design toolmaking.” This observation ties into 

the point made earlier in this chapter: architects are inclined to focus more 

on what parametric models do than how the models come to be. From this 

perspective, the failures and dead-ends can be hard to see. But through 
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the veneer of architects talking positively about the outcomes of projects 

they were personally involved in, there are fragments containing frank 

admissions of the problems encountered. The handful of authors who 

have written candidly about these challenges make up the bibliography 

of this section.

The most explicit critique of parametric modelling comes in a short, six-

page paper entitled Technical Notes from experiences and studies in using 

Parametric and BIM architectural software (Smith 2007). The paper is not 

peer reviewed, has not been published, and lists only one source. Ordinarily 

such a paper could be dismissed as misattributed opinion, only, this paper 

is written by Rick Smith.

Rick Smith played a large part in introducing parametric modelling to 

the architecture industry. Smith began working as a CAD technician for 

Lockheed in 1979 (Smith 2010), well before most architecture firms had 

computers. By the start of the 1990s, Smith was designing parts for the 

United States space shuttle with Dassault Systèmes’ CATIA (Smith 2010). 

Based on Smith’s experience in the aerospace industry, Frank Gehry and 

Associates hired Smith in 1991 to help design the Barcelona Fish using 

CATIA – one of the first times software of this calibre was used in the 

architecture industry. Smith ended up spending a decade consulting to 

Gehry, employing parametric modelling on some of Gehry’s most prominent 

projects, such as the Guggenheim Bilbao (1993-97), the Experience Music 

Project (1995-00), and the Walt Disney Concert Hall (1992-03). The success 

of this collaboration helped spawn the sister company Gehry Technology 

(incorporated in 2001), which went on to develop the parametric modelling 

software Digital Project (2004) – a modified version of CATIA intended for 

architects. Given the decades Smith has spent helping pioneer parametric 

modelling in the architecture industry, it is very significant for him to now 

turn around and highlight the flaws.
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Since 2007 Smith has announced the challenges associated with parametric 

modelling in the short, six-page white-paper prominently displayed on 

the website of his consultancy, Virtual Build Technologies. The white-

paper identifies five major shortcomings with parametric modelling 

(Smith 2007, 2):

1.	 Parametric models require a degree of front-loading.

2.	 Anticipating flexibility can be difficult.

3.	 Major changes break parametric models.

4.	 Changes can be hard to see visually.

5.	 Reusing and sharing models is problematic.

Smith’s points seem to resonate with what other authors have written, 

even if they do not write so emphatically. In the following section I take 

in turn each of Smiths five critiques and consider whether evidence from 

peer-reviewed authors corroborates his self-published opinions.

One: Front-loading

When you model using parametrics you are programming following 

similar logic and procedural steps as you would in software 

programming. You first have to conceptualize what it is you’re going 

to model in advance and its logic. You then program, debug and test 

all the possible ramifications where the parametric program might fail. 

In doing so you may over constrain or find that you need to adjust the 

program or begin programming all over again because you have taken 

the wrong approach.

Smith 2007, 2

In Smith’s first critique of parametric modelling, he points out that 

creating a parametric model requires some degree of upfront planning. 

This is reiterated by Weisberg (2008, 16.12) who recalls that even in 

1993 designers creating parametric models in Pro/ENGINEER needed to 

“carefully plan the design, defining ahead of time which major elements 

would be dependent upon other elements.” Planning is a necessary 

component of parametric modelling because the logical rigidity of a 

model’s explicit functions requires that the designer anticipate, to some 

degree, the parameters of the model and the hierarchy of dependencies 

between functions. This “prerationalization process is often found to be 
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arduous,” states Gerber (2007, 205), “as it requires a significant amount of 

upfront cognitive investment.” While pre-rationalisation can be onerous, 

the real difficulty of pre-rationalisation is not the upfront cognitive 

investment but rather the risk that the designer may invest time on 

“the wrong approach” (Smith 2007, 2). As Axel Kilian (2006, 54) warns, 

“structuring the design approach early on in the design process … offers 

little flexibility once a model has been created.” This is a similar problem to 

MacLeamy’s front-loading: many changes in an architecture project cannot 

be anticipated upfront, and decisions made too early in the project may 

raise the subsequent cost of design changes since any major change will 

undo all of the initial work. Aish and Woodbury (2005, 151) echo this 

statement by acknowledging “parameterization may require additional 

effort, may increase complexity of local design decisions and increase the 

number of items to which attention must be paid in task completion.” The 

additional effort required to design using explicit functions necessitates 

that designers have some notion of the design outcome prior to modelling. 

This upfront planning can be challenging, particularly in a process as 

notoriously hard to anticipate as the design process.

Two: Anticipating Flexibility

Once you think you have a working parametric model you may still 

find you haven’t programmed a parameter of the geometry in a way 

that is adjustable to a designer’s future request. A designer might say 

I want to move and twist this wall, but you did not foresee that move 

and there is no parameter to accommodate the change. It then unravels 

your program. Many times you will have to start all over again. Imagine 

trying to do this on a complex and fully integrated building.

Smith 2007, 2

Part of the upfront planning of a parametric model, according to Smith’s 

second critique, involves anticipating future design changes. If changes 

can be anticipated, the model can be structured with the appropriate 

parameters to accommodate these changes. However, if a change is not 

anticipated, the designer must accommodate the change by modifying 

the model’s explicit functions. This process of “conceiving, arranging and 
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editing dependencies is the key parametric task” according to Woodbury 

(2010, 25). As with the task of initially building the parametric model, 

modifying the explicit functions can be challenging, particularly on 

a “complex and fully integrated building” (Smith 2007, 2). A critical 

endeavour of the designer is therefore to avoid unnecessarily rebuilding the 

model by anticipating future changes and creating parametric models with 

the flexibility to accommodate these anticipated changes from the start.

Given the importance of anticipating flexibility, a seemingly obvious 

response is to make every aspect of a model flexible; add parameters for 

every possible whimsy of the designer. But parameters come at a cost. They 

require work upfront to implement, and they require even more work to 

change. This investment may not pay off if the parameter is rarely used. 

Therefore, the skill of anticipating flexibility is getting the balance right 

between too much and too little flexibility. Fabian Scheurer and Hanno 

Stehling share this sentiment:

The challenge of building a parametric model is to untangle the 

interdependencies created by different requirements and find a set of 

rules that is as simple as possible while remaining flexible enough to 

accommodate every occurring case. In other words: to pinpoint the 

view to the exact level of abstraction where no important point is lost 

and no one gets distracted by unnecessary detail.

Scheurer and Stehling 2011, 75

Thus, an ideal parametric model encompasses all the variations the 

designer wants to explore with the most concise set of parameters 

possible. According to Jane Burry and Mark Burry (2006, 793) this 

catches designers in a paradox: upfront they need to anticipate potential 

changes to the model, yet they lack the knowledge to do so because it is 

the “very variability of the model that uncovers potential ranges of [new] 

possibilities that leads to design explorations.” The paradox of anticipating 

flexibility presents a challenge for designers, one they must overcome to 

avoid making major model changes.
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Three: Major Changes

After all the time and effort of programming the geometry to where 

you think you have it right, you may find you still have to start all over 

again because the initial design concept has completely changed.

Smith 2007, 2

Smith’s third critique of parametric modelling is that major changes will 

break even the most flexible parametric models. Ordinarily changes can 

be accommodated either through modifying parameters or by modifying 

the model’s explicit functions. However, an industry survey by the 

Aberdeen Group (2007, i) of more than 150 firms (8% of which were 

architecture firms) found that designers “often end up spending more 

time fixing models than if they had simply started from scratch.” Weisberg 

(2008, 16.12) noted similar behaviour in his observations of engineers, 

concluding the difficulty of modifying a parametric model’s explicit 

functions was such that “in extreme cases (and sometimes in cases that 

were not particularly that extreme), the user was forced to totally recreate 

the model.” In reality the designer is never forced since a designer always 

has the option of not making a particular change. Although, admittedly, 

there is little comfort in being asked to choose between either completely 

rebuilding your parametric model or compromising your design intentions 

to fit the limitations of an existing parametric model.

Architects tend to be unwilling to talk about the “failures and dead-ends” 

(Fischer 2008, 245) that result in models being rebuilt. When they do, it 

is often only in passing. For instance, David Gerber (2007, 205) mentions 

that if the “topology of a project changes the [parametric] model generally 

needs to be remade.” Yet apart from this single sentence, Gerber does 

not dedicate any more space in his five hundred-page thesis to the fact 

that models employed for their flexibility apparently fail if the topology 

of the project changes – a seemingly critical detail for a thesis entitled 

Parametric Practices. Slightly more depth can be found in various exposés 

of the parametric modelling process. For example, Mark Burry (1996, 

78) speaks to the issue of topological fragility when discussing the 

design process for the triforium column of the Sagrada Família. Burry 

initially built the parametric model from hyperbolic paraboloid geometry 

but, during the subsequent design process, the design team decided to 

test whether the column could instead be made from conoid geometry. 
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When Burry (1996, 78) tried to make this topological transformation, 

he found himself in a situation where “there is no solution other than 

to completely disassemble the model and restart at the critical decision.” 

These struggles with topological transformations, particularly ones that 

result in models being rebuilt, are especially acute for architects given the 

relative lack of topological consistency in building forms when compared 

to the typically homeomorphic forms of boats, planes, and cars dealt with 

in other industries.

While topological transformations can be difficult, they are not the only 

type of major change that causes models to be rebuilt. Dominik Holzer 

et al. (2007) tells of how unanticipated changes can completely disrupt a 

model, as happened on the model for AAMI Park stadium in Melbourne. 

Holzer joined the project as a member of ARUP’s team assisting with the 

structural calculations during the design development. By this stage of 

the design process, many parts of the project were finalised and therefore 

included as invariable geometry in the model. It was expected that the 

design would become more resolved during the design development 

process, however, the opposite happened: “the number of variable design 

factors increased” (Holzer et al. 2007, 637). As more and more of the 

original design intent was changed, and as the changes impacted parts of 

the model initially assumed to be invariable, the changes became of “such 

a disruptive nature that the parametric model schema could not cope with 

them” and the “model consequently fell apart” (Holzer et al. 2007, 639). 

Holzer had no choice but to rebuild the model. Changing a parametric 

model is often so disruptive that Hudson (2010, 240) recommends “early 

models should be treated as disposable and not precious.” Jane Burry 

(2007, 622) also notes that it is commonplace when parametric modelling 

to “return to the metaphorical drawing board to edit the relational graph 

or remodel completely.” While Weisberg (2008, 16.12) observes designers 

trying to avoid this by “planning their design work in order to avoid having 

to start over if major changes were made to the design.” However, even 

with the best front-loaded anticipation of changes, the inflexibility of 

parametric models in the face of major changes often present the designer 

with only one viable option: start over.

There will always be changes outside the designer’s control – to the 

legislation, budget, and the client’s favourite colour. And since designers 

learn through designing, there will always be changes that cannot be 



44

anticipated prior to modelling. These changes are ordinarily accommodated 

by modifying parameters or by modifying the model’s explicit functions. 

However, if the change is large enough, or the topology unfamiliar enough, 

this choice will diminish to just one option: rebuild the model. A decidedly 

inflexible outcome.

Four: Change Blindness

Once you have your program working if anyone changes a parameter 

it could affect the geometry somewhere in the design that you didn’t 

want to be changed. This occurs often and the change may not be 

detected until much later in the design phase, or even worse, in the 

more expensive construction phase.

Smith 2007, 2

Designers often fail to observe changes in models, says Smith in his 

fourth critique of parametric modelling. His claim is corroborated by 

strong empirical evidence from numerous psychologists. Summarising 

this existing research, Simons and Levin (1997, 261) note, “experiments 

using a diverse range of methods and displays have produced strikingly 

similar results: unless a change to a visual scene produces a localizable 

change or transient at a specific position on the retina, generally, people 

will not detect it.” This phenomenon is known as change blindness. A study 

by Nasirova et al. (2011) of twenty participants using parametric models 

found “change blindness did indeed occur … making change detection 

for 3D parametric [modelling] highly challenging, slow and confusing” 

(2011, 762; a similar point is made in: Erhan, Woodbury, and Salmasi 

2009). A designer suffering from change blindness will essentially be unable 

to see certain model changes, even though the changes are unobscured 

on screen while the designer actively looks for them. On occasion the 

designer will fail to see any changes at all. Phillips (1974) demonstrates 

that this problem is exacerbated by the latency between seeing one 

variation and seeing the other variation (which, in a parametric model, is 

the time between making a change and seeing the result). The propensity 

of designers to suffer from change blindness has two major implications 

for the application of parametric modelling:
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•	 Firstly, as Rich Smith warned, changes to a parametric model may 

have undetected consequences. In chapter  7 I discuss a project 

where inadvertent changes went undetected until they caused near 

catastrophic problems during the construction phase.

•	 Secondly, if a designer is unable to identify what has changed between 

two model variations, then they may struggle to make an informed 

evaluation of design changes.

Five: Reuse and Sharing

This also points to the fact that any operator using the model needs 

intimate knowledge of the parametric program that is written for that 

specific design. This logic knowledge is not easily transferred with 

the 3D model. In a sense the original programmer of the model then 

becomes the owner of the model. Many times if the program is too 

complex the original programmer is the only one who can work with it.

Smith 2007, 2

Smith’s final critique of parametric modelling is that parametric models are 

difficult to reuse and share. Parametric Technology Corporation (PTC 2008, 

3) acknowledge this problem and say “even after a model is created, other 

designers can’t easily modify the design because they don’t possess the 

knowledge about how it was created and the original design intent.” Yanni 

Loukissas (2009) observes that because parametric models are difficult to 

share, one architect within an organisation inevitably becomes the “keeper 

of the geometry” – the person responsible for the parametric model by 

virtu of being the only person capable of modifying the model. A similar 

conclusion was drawn by the Aberdeen Group’s survey (2007, 3), which 

identified the following “top four challenges to design reuse” (2007, 3):

1.	 Model modification requires expert CAD knowledge.

2.	 Models are inflexible and fail after changes.

3.	 Users cannot find models to reuse.

4.	 Only the original designer can change models successfully.

The first, second, and fourth item on this list are singled out by the 

Aberdeen Group (2007, 3) “as testament to the fact that feature based 

models [a synonym for parametric models] can be a barrier to design 
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reuse.” In many ways, these three points are just manifestations of Smith’s 

third critique: major changes often break parametric models. After all, if 

a designer breaks their own model trying to implement a change, then a 

designer unfamiliar with the model is going to be in a far worse position 

to adapt that model to a totally new circumstance. Research by Kolarić et 

al. (2010) indicates that even simple tasks becomes cognitively demanding 

when a parametric model is unfamiliar. Identifying a relationship in 

a parametric model containing twelve objects took participants on 

average ten seconds to complete, and they were wrong 20% of the time 

(even though they had a 50% chance of randomly answering the yes/no 

question correctly; Kolarić et al. 2010, 709-10). This is to say nothing of 

the difficulty of identifying relationships in a much larger model or the 

difficulty of modifying relationships once they are correctly found – two 

tasks necessary for reuse and sharing.

The Challenges of Parametric Modelling

Rick Smith’s five critiques of parametric modelling are a subject absent 

from much of the architectural discourse. However, dispersed through 

the writings of architectural theorists, practicing architects, software 

manufactures, and psychologists are pieces of evidence that strongly 

support Smith’s five claims. Collating this fragmented evidence represents 

a significant furthering in our understanding of parametric modelling. 

Perhaps most notably, it demonstrates that parametric models used 

in practice are often blindsided by the very thing they purportedly 

accommodate: change.

Smith’s first three critiques (front-loading, anticipating flexibility, 

and major changes breaking models) are really manifestations of the 

same thing: the difficulty of expressing unsettled design intentions 

with explicit functions. Given this difficulty, front-loading is frequently 

necessary to orchestrate a parametric model’s explicit functions into an 

appropriate hierarchy. Once in this hierarchy, the difficulty of changing the 

relationships often prompts designers to try – somewhat in vain – to avoid 

changes by anticipating them first. This is a situation that unfortunately 

shifts the rhetoric around parametric modelling, from one of designers 

embracing change, to one of designers eschewing change. To a lesser 

extent, the challenges of working with explicit functions also contribute 



47

to the problems with sharing models, since being unfamiliar with a model 

only exacerbates the difficulties of changing the model. The only critique 

from Smith not directly linked to fragility of explicit functions is change 

blindness, which instead arises from difficulties all humans have in visually 

observing and evaluating change.

Smith’s critiques show that architects are clearly facing challenges with 

expressing design intentions using explicit functions, while also struggling 

to observe design changes and to reuse models. These observations are 

substantiated independent of the parametric modelling software used, 

the design team composition, the stage parametric modelling is used 

in a project, the types of changes asked for, and the design complexity. 

While each of these circumstances may be singled out as a problem, Smith’s 

critiques suggest that they are symptoms, or at least aggravations, of 

problems common to all parametric models. These are problems largely 

concerning explicit functions but they are not solely technological, they 

concern the designer and they also concern the inherent unpredictability 

of the design process. Smith’s critiques indicate that designers are often 

finding themselves in situations where they cannot modify the model’s 

explicit functions and the designer is left with two undesirable choices: 

they can delay the project and rebuild the model, or they can avoid making 

the change altogether.

2.4	 Conclusion

The difficulties of parametric modelling are set in motion by the struggles 

to define it. The term parametric originates in mathematics where, since 

at least the 1830s, mathematicians and scientists have used the term 

in relation to various geometric representations. However, as architects 

have adopted parametric modelling as a design medium, the definition 

of parametric has become muddied. Now when architects use the term 

parametric, they could mean all of design, or only the designs that change, 

or tooling, or design in the style of parametricism. The  disagreement 

exists even on an individual level, with many prominent authors defining 

parametric differently across the span of their work.

The commonality of these contended definitions is that they focus on 

what parametric models do. To a certain extent this makes sense: it is, 
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after all, what parametric models do that makes them interesting to 

architects. For architects, parametric models purportedly improve the 

designer’s ability to make changes, thereby improving their capacity to 

design. In theory a designer can modify a model’s parameters and see the 

design change almost instantly. As such, parametric models have come to 

be understood in terms of their outputs; a method for producing tools, or 

making parametricism, or creating design representations that change in 

relation to parameters. This focus on what parametric models do suggests 

a separation between creating and doing, a separation that underplays the 

significance of creating and maintaining a parametric model.

It is the construction and maintenance of the explicit relationships inside 

a parametric model that distinguishes parametric modelling from other 

forms of design representation. As such, I define a parametric model as 

many mathematicians would: as a set of equations that express a geometric 

model as explicit functions of a number of parameters. While arriving 

at this definition has been a contribution of this chapter, the primary 

contribution of this chapter has been to expose the difficulties associated 

with using explicit functions to design. Learning to express uncertain design 

outcomes with the computational logic of explicit functions is, for most 

architects, a “hard-won skill” (M. Burry 2011, 38). Even for experienced 

practitioners, like Rick Smith, the networks of explicit functions they weave 

often become so brittle that starting over is easier than making a change. 

Flexible parametric models often turn out to be inflexible in practice, 

and models set up to embrace change often instead end up restricting 

change. For architects, these difficulties are largely without precedent 

since parametric modelling is often “more similar to programming than to 

conventional design” (Wesiberg 2008, 16:12). The difficulties are familiar, 

however, to many software engineers who also often struggle to create 

flexible code – as I will detail in the following chapter.
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3	 The Design 
of Software 
Engineering

To a computer, a parametric model reads as a set of instructions. The 

computer takes the inputs, applies the sequence of explicit functions, and 

thereby generates the parametric model’s outputs. “Anybody involved in 

any job that ultimately creates instructions that are executed by a computer, 

machine or even biological entity, can be said to be programming” 

argues David Rutten (2012), the developer of the popular parametric 

modelling interface, Grasshopper. This is not to say programming and 

parametric modelling are synonymous. There are clearly significant 

differences between designing architecture and designing software. Yet 

in both cases, there is a common concern with automating computation 

through sequences of instructions. Despite this “common ground” 

(Woodbury 2010, 66), and despite architects recognising that parametric 

modelling is often “more similar to programming than to conventional 

design” (Weisberg 2008, 16.12), the implications of the parallels between 

parametric modelling and software engineering remain largely unexplored. 

In particular, two pertinent questions remain unaddressed: if parametric 

modelling and software engineering both concern the automation of 

computers, do they both encounter the same challenges when doing so? 

And if they share the same challenges, are parts of their respective bodies 

of knowledge transferable in alleviating these challenges?

Woodbury, Aish, and Kilian (2007) have already shown that one area of 

software engineering – design patterns – is applicable to the practice of 

parametric modelling. Yet subsequently Woodbury (2010, 9) has been 

cautious in suggesting that architects can learn from software engineers, 

saying the practices “differ in more than expertise.” Woodbury (2010, 9) 

goes on to describe architects as “amateur programmers” who naturally 

“leave abstraction, generality and reuse mostly for ‘real programmers’.” 

In this chapter I will show how abstraction, generality, and reuse have 

not always been the foremost concern of ‘real programmers’, and how 

Woodbury’s assessment of contemporary architects could equally apply 
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to past software engineers. Thus, while Woodbury (2010, 9) sees today’s 

architects as amateur programmers who are largely disinterested in 

software engineering, past preferences need not inform future practices. 

Given the success Woodbury et al. (2007) have had at improving the practice 

of parametric modelling with knowledge from software engineering, there 

is reason to suspect many more parts of the software engineering body 

of knowledge are also applicable to the practice of parametric modelling.

In this chapter I aim to identify the areas of knowledge employed by 

software engineers that could potentially help architects creating flexible 

parametric models. I begin the chapter by discussing how programmers 

once faced a software crisis not too dissimilar to the challenges architects 

are currently facing with their parametric models. I go on to discuss the 

body of knowledge that helped programmers overcome the software crisis 

and hypothesise about which aspects of this body of knowledge may be 

applicable to the practice of parametric modelling.

3.1	 The Software Crisis

In the 1960s, around the time that Ivan Sutherland was creating Sketchpad, 

a number of big software projects unexpectedly failed. These failures 

“brought big companies [like IBM] to the brink of collapse” recalls Turing 

award-winner Niklaus Wirth (2008, 33) in his Brief History of Software 

Engineering.1 The most shocking feature of the failures is that they happened 

during a period of substantial progress in computation; a period where 

newly invented third-generation programming languages were running 

atop processors with exponentially increasing speeds (Wirth 2008, 33). 

Yet, despite these advances, projects were coming in significantly over 

budget, they were late or, even worse, they were abandoned. A notable 

example is IBM’s System/360 project, managed by Frederick Brooks, which 

in 1964 was one of the largest software projects ever undertaken. The size 

of the project was possible since computers had become “several orders of 

1	 While computers are a relatively recent invention, their rapid development has left 
behind an immense history. In this chapter I only touch two aspects of this history: 
the software crisis and the cost of change curve. For a more complete history I would 
recommend starting with Wirth’s (2008) Brief History of Software Engineering, which 
references a number of the key papers. Unfortunately it seems no one has yet written a 
comprehensive book on history of software engineering – perhaps due to the size and 
speed of the industry – so beyond Wirth’s paper the best sources tend to be books and 
articles published from the period, such as Brook’s (1975) The Mythical Man-month. 
Numerous guides to the best literature can be found online.
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magnitude more powerful” (Dijkstra 1972, 861) but the size of the project 

also amplified fundamental problems with programming. These problems 

could not be overcome by hiring several orders of magnitude more 

programmers. “Adding manpower to a late software project makes it later” 

says Brooks (1975, 25) reflecting on his management of System/360 in the 

seminal software engineering book, The Mythical Man-month. In the end, 

IBM’s ambitious System/360 unification, like many software engineering 

projects in the 1960s, was years late and cost millions of dollars more than 

budgeted (Philipson 2005, 19).

And so began the software crisis, a period when the hope borne of the 

relentless progression of computation was crushed; not by processing 

speeds derailing from their unlikely exponential increases but rather 

“crushed by the complexities of our own making” (Dijkstra 1997, 63); 

crushed by the challenge of simply writing software (Dorfman and Thayer 

1996, 1-3). Wirth (2008, 33) observes “it was slowly recognized that 

programming was a difficult task, and that mastering complex problems 

was non-trivial, even when – or because – computers were so powerful.” 

This realisation resembles the current situation in architecture, where the 

vast improvements in parametric modelling over the past decade have 

exposed the difficulties of simply creating a parametric model. In much the 

same way architects may blame themselves for failing to anticipate changes 

to an inflexible parametric model, programmers feared human cognition, 

not computer power, would be the limiting factor in the application of 

computation. This idea was so alarming that in 1968 NATO assembled a 

team of scientists “to shed further light on the many current problems in 

software engineering” (Naur and Randell 1968, 14).

The NATO Software Engineering conference was a watershed moment. 

Amongst discussions of whether anyone had died from the software 

crisis2 was talk of “slipped schedules, extensive rewriting, much lost 

effort, large numbers of bugs, and an inflexible and unwieldy product” 

(Naur and Randell 1968, 122). These issues describe, almost word-for-

word, the challenges many architects face when using parametric models 

(see chap.  2.3). In responding to these difficulties, the inclination at 

the NATO conference was to gather data rather than rely on intuition. 

2	 Computers in 1968 were “becoming increasingly integrated into the central activities of 
modern society” (Naur and Randell 1968, 3) and many at the conference were concerned 
that software failures would come to harm those who were now relying upon computers.
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The term Software Engineering originates from the conference’s title, which 

is a provocative attempt to “imply the need for software manufacture to 

be based on the types of theoretical foundations and practical disciplines, 

that are traditional in the established branches of engineering” (Naur and 

Randell 1968, 13). In this respect, the discipline of software engineering 

arises as a direct response to the software crisis; an attempt to overcome 

the crisis through a reasoned understanding of software manufacturing.

Boehm’s Curve

Barry Boehm did not attend the 1968 NATO conference but it clearly 

influenced him. As the attendees of the conference had done, Boehm 

warned in 1972 that software “was often late and unreliable, and that the 

costs were rising” (Whitaker 1993, 300). This was considered a “shocking 

conclusion at the time” (Whitaker 1993, 300) and the United States Air 

Force, who had commissioned the study, refused to publish the findings, 

which they “rejected out of hand” (1993, 300). Boehm returned four 

years later with a paper bearing the same title as the NATO conference: 

Software Engineering (Boehm 1976). In this paper Boehm (1976, 1126-27) 

once again produced graphs showing that software was becoming more 

expensive than the hardware it ran on. However, the paper is perhaps 

better known for another graph it contains, a graph that has come to be 

known as Boehm’s curve (fig. 11; 1976, 1228; 1981, 40).

Boehm’s curve (fig. 11) observes that as a computer program becomes more 

developed, it also becomes more difficult to change. This was the same 

observation Paulson (1976, 588) had made about architecture projects 

that same year (see chap. 2.2).3 Paulson and Boehm’s curves have the same 

axes, the same shape, and the same conclusion. The major difference is that 

Boehm’s curve has supporting data while Paulson’s curve is more a diagram 

of what he thought was happening. The data in Boehm’s curve forecasts 

that making a change late in a software project costs one hundred times 

more than making the same change at the project’s inception. In effect, 

a software project – like an architecture project – becomes substantially 

less flexible over time and, as a result, the programmer’s capacity to make 

changes is greatly diminished by the increasing cost of change.

3	 I can find no evidence that Paulson or Boehm knew of each other’s work.



Figure 11: Boehm’s 
curve (1981, 40). 
An elaboration of 
Boehm’s earlier 
curve (1976, 1228). 
Note that Boehm 
plotted the data 
logarithmically. When 
plotted on a linear 
scale it resembles 
figure 12, which 
closely matches 
Paulson (fig. 9) and 
MacLeamy’s curve 
(fig. 10).

Figure 12: Boehm’s 
curve plotted on a linear 
scale (Beck 1999, 26).

Figure 13: Beck’s 
curve (1999, 28). 
There are no project 
stage demarcations 
on the horizontal axis 
because the relatively 
constant cost of change 
allows the project to 
cycle rapidly through 
iterations, which enables 
traditionally early stage 
activities, like developing 
the project requirements, 
to continue late into the 
project – and vice versa 
(Beck 1999, 28).
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Beck’s Curve

Some programmers reacted to Boehm’s curve by trying to avoid change, 

their rationale being that if a change costs one hundred times more to 

make at the end of the project, then it makes sense to spend considerable 

time upfront preventing any late-stage changes. This is the same premise 

and conclusion that led MacLeamy to advocate the front-loading of 

architecture projects to avoid late-stage changes (see chap.  2.2). For 

software engineers, a common way to suppress change is with Winston 

Royce’s (1970) waterfall method. In the waterfall method, a project is 

broken down into a series of stages: requirements, design, implementation, 

verification, and maintenance. The breakdown resembles the stages 

routinely used in architecture and engineering projects. Each stage is 

completed before proceeding to the next, with the hope being that if the 

requirements are finalised before commencing the design (or any other 

subsequent stage), then there will be no late changes from unexpected 

alterations to the requirements (or any other proceeding stage). Of 

course, finalising the requirements without seeing the design is a tricky 

proposition (Microsoft 2005).

Royce (1970) was aware of the waterfall method’s shortcomings having 

originally introduced it as an example of how not to organise a software 

project. The waterfall method was, in fact, Royce’s antithesis. Royce (1970, 

329) warned that the waterfall method was “risky and invites failure”, yet 

to his dismay, many of Royce’s readers disagreed with him and instead 

sided with the logic of what he was arguing against. The waterfall method 

became what Boehm (1988, 63) describes as “the basis for most software 

acquisition standards,” perhaps due to its clean hierarchical divisions of 

labour and affinity for fitting in a Gantt chart.

The method Royce (1970, 329-38) intended to advocate took the waterfall’s 

sequential progression and broke it with eddies of feedback between the 

stages. This idea was extended by Boehm (1981, 41) who argued the cost 

of making late-stage changes was so high that in some cases it might 

be more effective to make successive prototypes with feedback between 

each iteration. Boehm (1988) later formalised this method into the Spiral 

Model of software development, which, much like Schön’s Reflective 

Practice (1983), coils through stages of creating prototypes, evaluating 

the prototypes, reflecting upon the prototypes, and planning the next 
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stage of work. This designerly way of approaching programming forms 

the basis of the Manifesto for Agile Software Development (Beck et al. 2001a). 

The manifesto’s fourth and final demand urges programmers to “respond 

to change over following a plan” (Beck et al. 2001a) – a demand that at once 

attacks the perceived rigidity of the waterfall method’s front-loading whilst 

also suggesting that Boehm’s cost of change curve need not be a barrier 

to making change. A number of programming methodologies fall under 

the banner of agile development, which includes Extreme Programming, 

Agile Unified Process, and Scrum. Kent Beck, the first signatory to the 

agile manifesto and the originator of Extreme Programming, captures the 

motivations of these methods in a book subtitled Embrace Change:

The software development community has spent enormous resources 

in recent decades trying to reduce the cost of change—better 

languages, better database technology, better programming practices, 

better environments and tools, new notations. What would we do if 

all that investment paid off? What if all that work on languages and 

databases and whatnot actually got somewhere? What if the cost of 

change didn’t rise exponentially over time [figure 12], but rose much 

more slowly, eventually reaching an asymptote? What if tomorrow’s 

software engineering professor draws [figure 13] on the board?

Beck 1999, 27

Beck provocatively suggests that Boehm’s curve (fig.  12) is no longer 

relevant when programmers have knowledge of “better languages, better 

database technology, better programming practices, better environments 

and tools, new notations” (Beck 1999,  27). In  effect, Beck says that 

programmers can flatten the cost of change with the body of knowledge 

associated with software engineering. This flattening is now known as 

Beck’s curve (fig. 13). An important implication of Beck’s curve is that 

the demarcations between project stages (such as: requirements, design, 

and production) have less importance since a relatively constant cost 

of change allows “big decisions [to be made] as late in the process as 

possible, to defer the cost of making the decisions and to have the greatest 

possible chance that they would be right” (Beck 1999, 28). This was a bold 

prediction in 1999, but increasingly studies are indicating that software 

engineers have gained the knowledge to lower the cost of changes. A large 

industry survey by the Standish Group (2012, 25) concludes “the agile 

process is the universal remedy for software development project failure. 
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Software applications developed through the agile process have three 

times the success rate of the traditional waterfall method and a much 

lower percentage of time and cost overruns.” This seems to carry through 

into the practice of software engineering, with Dave West and Tom Grant 

(2010, 2) showing that programmers now use agile development more 

often than the waterfall method. While these results do not speak directly 

to Beck’s curve, it is important to remember that “a flattened change cost 

curve makes [agile development] possible” (Beck 1999, 28). Remarkably, in 

only forty years, software engineering has gone from a point of crisis where 

the cost of late-stage changes seriously threatened the entire industry, to 

a point where the majority of software engineers are using a development 

method whose central tenet is to “welcome changing requirements, even 

late in development” (Beck et al. 2001b). As Beck (1999, 27) points out, 

the road out of the software crisis was “decades [of] trying to reduce the 

cost of change” now captured in an extensive body of knowledge related 

to software development.

3.2	 The Software Engineering 

Body of Knowledge

There is reason to suspect the body of knowledge concerning software 

engineering may also apply to architects using parametric models. Frederick 

Brooks (2010) makes a similar connection in his book The Design of Design, 

where he recounts designing his house and relates this to his experiences 

managing the design of IBM’s System/360 architecture (2010, 257-346). 

Brooks (2010, 21) says change is inevitable for both programmers and 

architects since they both normally begin with “a vague, incompletely 

specified goal, or primary objective” only clarified through iteratively 

creating and changing prototypes. These difficulties are compounded in 

the two practices, both by the fact that the cost of change generally rises 

exponentially as a project progresses, and by the fact that undetermined 

outcomes need to be expressed in logically precise instructions for the 

computer. While this problem is relatively new for architects creating 

parametric models, the same problem has challenged software engineering 

for decades. Evidence suggests that the knowledge software engineers have 

gained during this time allows them some control over the cost of change. 

This knowledge could potentially do the same in architecture.
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There are two main caveats in applying software engineering to parametric 

modelling. One caveat is that software engineers are often not particularly 

successful at what they do. On average, 49% of software projects using an 

agile development process will encounter significant challenges while 9% 

will fail outright. Just 42% of software projects are delivered on time, on 

budget, and with the specified features (fig. 14). While a 42% success rate 

may sound low, the Standish Group (2012, 25) says this represents the 

“universal remedy for software development project failure” principally 

because software engineers have historically had a success rate of only 16% 

(fig. 14; The Standish Group 1994). Thus, even software engineers following 

the best practices still encounter trouble more than they encounter success.

Another important caveat is that creating software is similar, but not 

identical, to creating architecture. Broadly speaking, some common points 

of difference include the following:

•	 The user: Software engineers tend to make software used by other 

people, whereas architects generally create parametric models for 

either themselves or for their colleagues.

•	 The product: Software engineers make software but architects 

ultimately make architecture rather than parametric models. While 

software may be evaluated in and of itself, a parametric model is 

typically valued for the architecture it produces.

•	 Team size: Software engineering teams range from lone individuals 

building an app, to thousands of developers creating an operating 

system. In comparison, parametric models are generally made by 

teams at the smaller end of this range.

•	 Project lifetime: Software engineering projects may last anywhere from 

a few minutes to a few decades, whereas the code in a parametric model 

is unlikely to persist beyond a few years (or perhaps even months).

53%

31%
16%

57%

29%
14%

49%

9%

42%

1994 2012 –Agile2012 –WaterfallFigure 14: The success 
and failure rates of 
software projects 
according to The 
Standish Group’s 
industry survey (1994; 
2012).

 Successful projects 
– delivered on-time, 
on-budget, and with the 
planned features.

 Challenged projects 
– either: over time, 
over budget, or lacking 
features.

 Failed projects – the 
project was abandoned.
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There will be numerous exceptions to these broad generalisations. 

The point, however, is that while architects and software engineers share 

similar challenges, not all of software engineering is equally relevant to 

the idiosyncratic circumstances of parametric modelling. In this section I 

outline the software engineering body of knowledge and hypothesise about 

which parts are most pertinent to the practice of parametric modelling.

Classifying Knowledge

There have been a number of attempts to classify knowledge relating to 

software engineering. In 1997, the Institute of Electrical and Electronic 

Engineers (IEEE) formed a committee tasked with creating the first 

“comprehensive body of knowledge for software engineering” (Hilburn 

et al. 1999, 2). This was a controversial undertaking. The Association 

for Computer Machinery (ACM) feared the body of knowledge “would 

likely provide the basis for an exam for licensing software engineers as 

professional engineers” (ACM 2000). The ACM, like many others, withdrew 

their support of the project. The IEEE committee’s four-year schedule 

dragged into seven years of deliberation. Meanwhile, Thomas Hilburn et al. 

(1999) sidestepped the IEEE committee to produce their own, and the 

first, Software Engineering Body of Knowledge Version 1.0 (SWEBOK.1999; 

fig. 15). This document captured the expected knowledge of a programmer 

who has spent three years in the industry, and was released in conjunction 

with Donald Bagert et al. (1999) corresponding Guidelines for Software 

Engineering Education Version 1.0 (SE.1999). Eventually, in 2004, a similar 

pair of documents was published by the IEEE committee: Alain Abran and 

James Moore’s (2004) Guide to the Software Engineering Body of Knowledge 

(SWEBOK.2004) along with Jorge Díaz-Herrera and Thomas Hilburn’s 

(2004) Software Engineering 2004: Curriculum Guidelines for Undergraduate 

Degree Programs in Software Engineering (SE.2004).

The relationship between the various SWEBOK is shown in figure 15. 

While the taxonomies are different, they all use the waterfall method as 

a template for classifying the software engineering process. This is not 

an endorsement of the waterfall method since the division of knowledge 

need not prescribe its deployment. For example, projects using an agile 

methodology necessarily apply knowledge of planning and coding and 

testing, although not in the same linear fashion as projects using the 



C
hapters in this thesis

M
ethod: M

easurem
ent

C
ASE A: Paradigm

s
C

ASE B: Structure
C

ASE C
: IDE’s

(ch. 4)
(ch. 5)
(ch. 6)
(ch. 7)

W
aterfall 

Royce 1970

1. System
 Requirem

ents
2. Softw

are Requirem
ents

3. Analysis
4. Design
5. C

oding
6. Testing
7. O

perations

SW
EBO

K
.2004 

Abran and M
oore et al. 2004

1. Requirem
ents

2. Design
3. C

onstruction
4. Testing
5. M

aintenance
6. C

onfiguration M
anagem

ent
7. Engineering m

anagem
ent

8. Engineering process
9. Engineering tools and m

ethods
10. Softw

are quality

SW
EBO

K
.1999 

H
ilburn et al. 1999

C
om

puting Fundam
entals

1.1 Algorithm
s & data structures

1.2 C
om

puter architecture
1.3 M

athem
atical foundations

1.4 O
perating System

s
1.5 Program

m
ing languages

Engineering
2.1 Requirem

ents
2.2 Design
2.3 C

oding
2.4 Testing
2.5 M

aintenance

Softw
are m

anagem
ent

3.1 Project M
anagem

ent
3.2 Risk M

anagem
ent

3.3 Q
uality M

anagem
ent

3.4 C
onfiguration M

anagem
ent

3.5 Process M
anagem

ent
3.6 Softw

are Acquisition

SE.2004 
Díaz-H

errera and H
ilburn et al. 2004

1. C
om

puting Essentials
2. M

athem
atical fundam

entals
3. Professional Practice
4. Softw

are M
odelling and Analysis

5. Softw
are Design

6. Softw
are Verification

7. Softw
are Evolution

8. Softw
are Process

9. Softw
are quality

10. Softw
are M

anagem
ent

SE.1999 
Bagert et al. 1999

C
ore area

1.1 Softw
are Requirem

ents
1.2 Softw

are Design
1.3 Softw

are C
onstruction

1.4 Softw
are Project M

anagem
ent

1.5 Softw
are Evolution

Foundation Area
2.1 C

om
puting Fundam

entals
2.2 H

um
an Factors

2.3 Application Dom
ains

Recurring Area
3.1 Ethics and Professionalism
3.2 Softw

are Process
3.3 Softw

are Q
uality

3.4 Softw
are M

odeling
3.5 Softw

are M
etrics

3.6 Tools and Environm
ents

3.7 Docum
entation

Figure 15: Comparison of 
various Software Engineering 
Bodies of Knowledge.

 Equivalent knowledge areas.

 Areas of knowledge applied 
to parametric modelling in my 
research.



61

waterfall method. With each SWEBOK agnostically employing the waterfall 

method’s stages, the key differences between the various SWEBOK lie in 

the classification of knowledge not pertaining to the waterfall’s stages. 

The SWEBOK.1999 clearly segregates these areas, with waterfall’s 

stages confined to the engineering category, which is separated from the 

computing fundamentals category and the software management category. 

While software management reappears in all the other SWEBOK, the 

computing fundamentals category is unique to the SWEBOK.1999 and 

covers areas of knowledge – like computer hardware and programming 

languages – that are potentially applicable to parametric modelling. 

For this reason, I have selected the SWEBOK.1999 to use in the following 

pages as I hypothesise about which parts are also applicable to architects 

creating parametric models. However, given the relative homogeneity of 

the various SWEBOK, I would expect similar results from using any of the 

other SWEBOK.

1.	 Computing Fundamentals

The Computing Fundamentals [1] category of the SWEBOK.1999 covers the 

foundational theories and concepts of software engineering. Many parts 

of this category are so essential to computing that they already necessarily 

contribute to parametric modelling. For instance, Computer Architecture 

[1.2] concerns the underlying structure of a computer, which includes 

the way transistors are laid out to allow more intensive calculations, and 

how networks exchange data to permit remote collaboration. Deriving the 

benefits of this knowledge requires no intervention from the software 

engineer or parametric modeller since it is encapsulated within a 

computer’s hardware. The same is true of both the Mathematical Foundation 

[1.3], which provides the formal logic to programming, and of Operating 

Systems [1.4], which provides the framework supporting the software. 

While the Computer Architecture [1.2], the Mathematical Foundations [1.3], 

and Operating Systems [1.4] have made large contributions to software 

engineering, these contributions come – in many ways –  independent 

of the actions from software engineers. By proxy, designers are already 

benefiting from these areas of Computing Fundamentals [1] whenever they 

purchase new computer hardware or invest in new operating systems.
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Algorithms and Data Structures [1.1] are not built into hardware and must 

instead be actively fashioned for a particular task. Considerable research 

has gone into tailoring Algorithms [1.1.2] and Data Structures [1.1.1] 

for parametric modelling. Examples of existing Algorithms [1.1.2] used 

in parametric modelling include algorithms for propagating changes 

through parametric models (Woodbury 2010, 15-16), rationalisation 

algorithms for simplifying complex surfaces (Wallner and Pottmann 2011), 

algorithms for simulating physical properties (such as: Piker 2011), and 

many proprietary algorithms buried in commercial software and geometry 

kernels (such as: Aish et al. 2012). Similar work has been done on Data 

Structures [1.1.1] to develop specialised file formats for things like sharing 

BIM models, describing B-rep geometry, and saving parametric models. 

While there is scope to further these existing Algorithms [1.1.2] and Data 

Structures [1.1.1], any improvements are likely to be refinements of what 

already exists. Given the maturity of the research in this area, I see few 

opportunities to address the flexibility of parametric models through 

making further contributions to Algorithms and Data Structures [1.1].

As with Algorithms and Data Structures [1.1], there are already many 

Programming Languages [1.5] for architects creating parametric models. 

Every programming language has a unique style for expressing concepts, 

which is called the language’s Programming Paradigm [1.5.2] (fig.  16). 

The paradigm influences how problems are solved in a particular language. 
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Figure 16: The 
programming 
languages architects use 
categorised by Appleby 
and VandeKopple’s 
(1997, xiv) taxonomy of 
programming paradigms.
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For instance, Appleby and VandeKopple (1997, 7) show how the United 

States Department of Defense addressed problems of “unmaintainable” 

and “fragile” software by creating a new multi-paradigm programming 

language, Ada (first released 1980). Appleby and VandeKopple (1997, xiv) 

divide programming paradigms – as many others do – into imperative 

paradigms and declarative paradigms (fig.  16). I will explain these 

denominations later in chapter 5 but for now it suffices to say that there 

is a broad taxonomy of possible programming paradigms. Currently 

architects only have access to two narrow bands of programming paradigms 

(see distribution in figure  16): the major textual CAD programming 

languages4 are all predominantly imperative with a bias towards procedural 

programming; whereas, the major visual CAD programming languages5 all 

reside in a very narrow subsection of declarative programming known as 

dataflow programming. While the two bands of paradigms occupied by CAD 

programming languages are well researched, they are ultimately limited. 

For architects this means they have a confined range of styles available to 

express ideas programmatically. This presents an opportunity to expand 

the practice of parametric modelling by borrowing new programming 

paradigms from software engineers.

2.	 Software Product Engineering

The Software Product Engineering [2] category of the SWEBOK.1999 

describes the activities involved in producing software. These activities 

are categorised by the phases of the waterfall method. As I explained in 

the preceding pages, the divisions do not prescribe that software engineers 

use the waterfall method since these categories are intended to capture the 

knowledge necessary for producing software independent of the overall 

programming process.

Software Product Engineering’s [2] first area of knowledge is Software 

Requirements Engineering [2.1], which pertains to the creation of project 

briefs. By and large there is nothing particularly remarkable about the 

way programmers create briefs. Like in other disciplines, they analyse the 

situation [2.1.1], generate requirements [2.1.2], and write specifications 

4	 This includes: 3dsMax: Maxscript; Archicad: GDL; Autocad: AutoLISP; Digital Project: 
Visual Basic; Maya: Maya Embedded Language; Processing: Java; Revit: Visual Basic & 
Python; Rhino: Visual Basic & Python; Sketchup: Ruby.

5	 This includes: Grasshopper; GenerativeComponents; Houdini; and MaxMsp.
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[2.1.3]. While these are important steps in producing software, they are a 

process architects are likely already adept at. 

From the Requirements [2.1] flows the Software Design [2.2], which in 

software engineering concerns the design of interfaces as well as the 

structure of code, data, and algorithms. Spending time structuring code 

rather than writing code has not always been a pastime of programmers. 

Prior to the software crisis, most programming languages (like FORTRAN) 

did not have a syntax for describing structure. The resulting programs 

generally had what Bertrand Meyer (1997, 678) calls, the “unmistakable 

‘spaghetti bowl’ look” of logic weaving haphazardly through unstructured 

code. Edsger Dijkstra (1968, 148) called the unstructured jumps “harmful” 

and “too much an invitation to make a mess of one’s program” (an 

observation he made in the same year as the NATO Software Engineering 

conference). In the ensuing years, most programming languages have 

adopted Böhm and Jacopini’s (1966) concept of enforcing structure with 

conditionals, loops, and subprograms. Meyer (1997, 40-46) argues that 

these structures help to decompose incomprehensibly large problems into 

vastly more understandable smaller structured chunks.6 Despite these 

benefits, most parametric software has only rudimentary support for 

structure, which the vast majority of architects – like programmers prior 

to the software crisis – shun in favour of unstructured models (the low 

rates of structure are revealed and discussed in chapter 6.3). Woodbury, 

Aish, and Kilian’s (2007) Some Patterns for Parametric Modeling suggests 

some common structures for parametric models, however, their structures 

are predominately focused on solving architectural design problems 

rather than addressing the problems of unstructured code. Accordingly, 

there remains significant scope to implement relatively straightforward 

structuring techniques on parametric models, which (based on evidence 

from similar interventions during the software crisis) may improve the 

understandability of parametric models.

The actual act of writing computer code is covered in Code Implementation 

[2.3.1], a subsection of Software Coding [2.3]. At first glance, writing 

code may seem worthy of a more prominent place in the SWEBOK.1999, 

especially given that writing code is one of the defining jobs of a software 

6	 Meyer (1997, 40-46) cites benefits to code decomposition, composition, 
understandability, continuity, and protection, which I will discuss in further in 
chapter 6.2.
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engineer. Yet, the positioning of Code Implementation [2.3.1] in such a minor 

category indicates how much ancillary knowledge goes into successfully 

writing code. This is an important observation when considering what 

architects need to learn in order to create a parametric model, and it 

is a point I will return to in the discussion (chap. 8.4) as I contrast the 

education of software engineers with the education of architects learning 

to use parametric models.

The Code Implementation [2.3.1] category also encompasses tools 

programmers use to write code. These tools, known as Integrated 

Development Environments (IDE), assist programmers by managing the 

compiling and debugging of code, as well as providing feedback to aid code 

comprehension (such as: pointing out possible coding errors, or explaining 

the meaning of a particular programming command). In contrast, Leitão, 

Santos, and Lopes (2012, 143) say “the absence of a (good) IDE” for 

parametric modelling “requires users to either remember the functionality 

or read extensive documentation.” They go on to say, “an iterative write-

compile-execute cycle,” implemented in most parametric modelling 

environments, “results in non-interactive development” (2012, 143). These 

limitations in the tools architects use to create parametric models could be 

addressed by borrowing concepts like live-debugging, live-programming, 

and other innovations from the IDEs software engineers use.

Software Coding [2.3] has two additional sections: Reuse [2.3.2], and 

Standards and Documentation [2.3.3]. Both of these sections are related to 

Software Design [2.2]. Reuse [2.3.2] relates to how the program has been 

structured and particularly whether modules of code can be extracted and 

shared. The structure also plays a role in Standards and Documentation 

[2.3.3] since these are tied to the levels of abstraction in the structure. 

Both Reuse [2.3.2] and Standards and Documentation [2.3.3] help reinforce 

the importance of well-structured programs and give more impetus to 

investigate the structure of parametric models.

Software Testing [2.4] involves verifying code correctness. Programmers 

like to automate this process, either by using metrics for measuring 

performance [2.4.4], or by automated unit testing of the code itself 

[2.4.1, 2.4.2], or even with quantitative experiments like A/B testing user 

behaviour. Anecdotally, architects seem to test their models by manually 

verifying the outputs, which can lead to problems like change blindness 
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(see chap. 2.3). Schultz, Amor, and Guesgen (2009, 402) demonstrate 

that testing methods “inspired by research in software engineering” may 

be applied to “qualitative spatial” problems. While there is considerable 

opportunity for further research in this area, given my focus on parametric 

model flexibility, I have elected to look only at Software Testing [2.4] in 

relation to measuring model flexibly with software metrics [2.4.4] 

(see chap. 4).

The final category in Software Product Engineering [2] is Software Operations 

and Maintenance [2.5], which embodies “concepts, methods, processes, 

and techniques that support the ability of a software system to change, 

evolve, and survive” (Hilburn et al. 1999, 25). In a similar manner, my 

research focuses on the change, evolution, and survival of both software 

and parametric models. In software engineering, the Software Maintenance 

Process [2.5.3] employs a “process [that] would include phases similar 

to those in a process for developing a new software product” (Hilburn 

et al. 1999). Thus, while Software Operations and Maintenance [2.5] is a 

distinct stage of Software Product Engineering [2], and a stage that closely 

resembles the goals of my research, the actual knowledge of operations 

and maintenance is already deployed in the prior stages of Software 

Product Engineering [2].

3.	 Software Management

Software Management [3] is the last major category of the SWEBOK.1999. 

Many of the same management challenges reoccur in software engineering 

and parametric modelling. These include more general challenges, such 

as managing a creative process whilst adhering to a budget, a schedule, 

and guarantees of quality; and these also include more specific challenges, 

like managing the development of code when the programming 

language requires precision but the outcome is uncertain. Accordingly, 

the management strategies employed by software engineers often have 

rough equivalence to strategies employed by architects. For example, 

the waterfall method has similar stages and a similar shift in effort to 

MacLeamy’s front-loading, and agile development has a similar pattern of 

iterative prototyping present in Schön’s reflective practice.
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However, within these general areas of agreement, there are idiosyncrasies 

to the specific management practices of software engineers. In Software 

Quality Management [3.3] (which overlaps with Testing [2.4]), software 

engineers emphasise automated quantitative measures of quality, either 

through unit testing to validate the code or through metrics to measure 

code quality objectively (these are applied to parametric models in 

chapter 4.3). And in Software Process Management [3.5] there is a degree 

of formalism around the design processes that would be unfamiliar to most 

architects. For instance, in the Scrum development process (a popular form 

of agile development) the inventors, Jeff Sutherland and Ken Schwaber 

(2011, 6-10), specify everything from the number of days a design cycle 

should last (a month), to the ideal team size (less than nine people), to 

the length of daily meetings (fifteen minutes). Since these management 

processes are so tuned to the nuances of programming, further research 

is required to establish whether they also translate to the nuances of 

parametric modelling.

Whilst Software Management [3] is undoubtedly a ripe area of investigation 

in the context of parametric modelling, it is an investigation I will leave for 

others to undertake. I have decided to limit my thesis primarily to the study 

of Computer Fundamentals [1] and Software Product Engineering [2] because 

understanding these technical issues is quite different to understanding 

the ethnographic issues of management. Covering both inside one thesis 

is unlikely to do justice to either. For this reason I will touch on only some 

of the ideas in Software Management [3], notably around Software Quality 

Management [3.3], but it will not be a primary focus for the remainder of 

this thesis.
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3.3	 Conclusion

The software crisis recalls many of the same challenges of parametric 

modelling. For software engineers, the improvements in computation 

during the 1960s resulted in more software being developed. The software 

was generally growing larger, being written in more abstracted languages, 

and running on-top better hardware. However, rather than programming 

becoming easier, these improvements intensified the difficulty of simply 

writing software (Wirth 2008, 33). Like architects working with parametric 

models, software engineers struggled to make changes within the logical 

rigidity of programming. These difficulties were amplified by the cost of 

change rising exponentially during a project – a phenomena highlighted by 

Boehm (1976; fig. 11) in a graph that resembles similar graphs by Paulson 

(1976; fig. 9) and MacLeamy (2001; fig. 10).

The software crisis gave rise to software engineering, a discipline dedicated 

to understanding the manufacture of software (Naur and Randell 1968, 13). 

Since demarcating this area of knowledge in the 1960s, software engineers 

have steadily become more successful at producing software (fig. 14; The 

Standish Group 1994 & 2012). Software engineers now postulate that that 

they can lower the cost of change to the point where the vertical asymptote 

of Boehm’s curve bends horizontal (fig. 13; Beck 1999, 27). Such radical 

transformations in software engineering arise from knowledge gained 

during decades of work studying the software engineering process.

The knowledge that has transformed software engineering is classified 

in the Software Engineering Body of Knowledge Version 1.0 (Hilburn et al. 

1999). Somewhat surprisingly, the act of writing code occupies a very small 

sub-section [2.3.1] of this classification; a position that underscores the 

breadth of knowledge (besides simply knowing how to program) required 

for successfully developing software. Some areas of knowledge, like Software 

Management [3], have direct correlations to the design process. Other 

areas, like certain aspects of Computing Fundamentals [1], are so essential to 

anything involving a computer that architects already necessarily benefit 

from them. However, large portions of the SWEBOK.1999 are largely 

without precedent in the practice of parametric modelling. In this chapter I 

have identified a number of knowledge areas that are potentially applicable 
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to parametric modelling while being accessible within the technical and 

temporal constraints of a PhD thesis. These are:

1.5	 Programming Languages

2.2	 Software Design

2.3	 Software Coding

2.4	 Testing

Programming Languages [1.5], Software Design [2.2], and Software Coding 

[2.3] are the respective focus of the three case studies in chapters 5, 6, & 7. 

Specifically, chapter 5 explores the impact of under-utilised Programming 

Paradigms [1.5.2], chapter 6 considers how the structure of Software Design 

[2.2] may apply to a parametric model, and chapter 7 investigates how 

Code Implementation [2.3.1] environments inform the development of 

parametric models. Each of these chapters aims to assess the influence the 

respective area of knowledge has on the flexibility of various parametric 

models. In order to measure flexibility, I draw upon the knowledge area of 

Testing [2.4], the focus of the following chapter.
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4	 Measuring 
Flexibility

Measuring a parametric model’s flexibility is a somewhat challenging 

proposition. There is no agreed upon definition of flexibility, nor is 

there any existing way to measure it. Furthermore, as I outlined in the 

introduction (chap. 1), flexibility is often intwined with the circumstances 

of a project, making it hard to clearly observe what is happening. Flexibility 

remains largely enigmatic.

In this chapter I outline a framework for observing the flexibility of 

parametric models. I begin by proposing a research method that relies 

upon triangulation between case studies to mitigate some of the 

circumstantial challenges of observing flexibility. In the second half of 

the chapter I draw upon concepts encapsulated in the Testing [2.4] section 

of the SWEBOK.1999. Borrowing from software engineering, I outline a 

suite of quantitative and qualitative research instruments for measuring 

various types of flexibility in a parametric model. In aggregate, the research 

method and research instruments will serve as a foundation for observing 

flexibility in the case studies presented during chapters 5, 6, & 7.

4.1	 Research Method

The flexibility of a parametric model can be hard to observe. To date, the 

best observations have come from architects working on projects where the 

model became inflexible and failed. While architects can be reluctant to talk 

about their failures, the few who have done so (discussed in chapter 2.3) 

prove useful in identifying the challenges associated with parametric 

modelling. However, in coming to understand why parametric models 

are failing, these reports tend to offer little insight beyond documenting 

general symptoms – a major change breaks the model, the model is hard 

to share, there is a need to anticipate changes whilst parametric modelling 

(see chap. 2.3). Most of these observations come in the course of other 

research; the authors had not set out to study model flexibility and while 

they were able to identify the symptoms of inflexibility, they generally 
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lacked the controls necessary to isolate the contributing factors. Herein 

lies the paradox: flexibility is intertwined with the design process yet the 

circumstances of the design process make it difficult to obtain confident 

observations of parametric model flexibility.

In the introduction (chap. 1) I highlighted that software engineers often 

conduct similar studies to my own. When doing so, they face an analogous 

challenge of trying to understand the intricate interrelationships between 

people, code, and computers. To make sense of these relationships, 

Tim  Menzies and Forrest Shull (2010, 3) say that software engineers 

often seek elegant, repeatable, statistical studies (even the name software 

engineering has connotations of this positivist perspective). While such an 

approach works for certain aspects of software engineering (like Boehm’s 

[1976] empirical analysis regarding the cost of change [fig. 11]) Edsger 

Dijkstra (1970, 1) argues that for studies related to practice, it is problematic 

to study small, idealised problems and then generalise them by concluding 

with the assumption: “… and when faced with a program a thousand times 

as large, you compose it in the same way.” Dijkstra (1970, 2) contends 

that the “widespread underestimation” of project-based circumstances, 

in research prior to 1970, was “one of the major underlying causes of the 

current software failure [the software crisis].” Therefore, as I argued in 

the introduction (chap. 1), attempting to create a simplified, controlled, 

and isolated study may eliminate the best opportunities to observe how 

parametric flexibility manifests in practice.

In the introduction I posited that case studies might offer a way to 

understand flexibility without needing to isolate research from practice. 

While this may be closer to social science than the hard science origins 

of software engineering, Andrew Ko (2010, 60) argues such an approach 

is “useful in any setting where you don’t know the entire universe of 

possible answers to a question. And in software engineering, when is that 

not the case?” A salient example from software engineering is Frederick 

Brooks’s (1975) The Mythical Man-Month : Essays on Software Engineering 

where Brooks reflects upon his experiences managing IBM’s System/360. 

These reflections, in a similar spirit to Schön’s (1983) notion of reflection 

on action, provide other researchers and practitioners with an insight into 

managing a large software project that would be unobtainable from just 
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examining specific parts in isolation. Such a method has a constructivist 

worldview where, according to Creswell and Clark (2007, 24), multiple 

observations taken from multiple perspectives build inductively towards 

“patterns, theories, and generalizations.”

A key component of case study research is selecting a suite of cases that 

ensure the validity of anything built inductively on-top of them. Given the 

spectrum of issues concerning parametric models, a single case study – or 

even a collection of case studies – is unlikely to be entirely representative. 

In research projects where instrumental case studies cannot be found, 

Robert Stake (2005, 451) encourages researchers to select case studies that 

“offer the opportunity to learn” because “sometimes it is better to learn a 

lot from an atypical case than a little from a seemingly typical case.” In my 

research I want to learn about applying software engineering knowledge 

to the practice of parametric modelling. In the previous chapter (chap. 3) 

I hypothesised about which aspects of the software engineering body of 

knowledge are most likely to influence a parametric model’s flexibility. 

In selecting the projects to test this knowledge, the best opportunity to 

learn about flexibility is seemingly presented by projects likely to encounter 

difficulties. According to the factors I identified in chapter 2.3, the projects 

most fated for trouble are those where the following are applicable: the 

outcomes cannot be anticipated from the start, major changes are likely, 

the model is large or complicated, change blindness occurs, and the model 

is shared. A final criterion for selecting the cases is that the projects have 

to be accessible and manageable within the three-year period of my PhD 

candidature. With these criteria in mind I have selected the following three 

case studies:

•	 Case A: Realignment of the Sagrada Família frontons

A project that involves developing a relatively complicated parametric 

model to refine an existing model of the Sagrada Família’s frontons. 

The project has strict tolerances but there is also ambiguity as to what 

the realignment will involve, which causes uncertainty regarding 

changes to the project. On this project I investigate how Programming 

Paradigms [1.5.2] impact the construction and modification of 

parametric models. See chapter 5.
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•	 Case B: The Dermoid pavilion

The Dermoid pavilion is a collaborative design project involving over 

a dozen researchers from Melbourne and Copenhagen. The pavilion’s 

wooden reciprocal frame is formidably hard to model. Furthermore, 

the models need to remain flexible enough to accommodate major 

changes from a range of authors over a period of a year. On this project 

I explore how Software Design [2.2] influences the understandability 

of parametric models that are used in collaborative environments. See 

chapter 6.

•	 Case C: The hyperboloid sound wall.

Change blindness during the design of the hyperboloid sound wall 

led to significant problems during the wall’s construction. I revisit 

this project and consider how Code Implementation [2.3.1] may help 

improve the interactivity of parametric modelling. See chapter 7.

While the three case studies are not necessarily representative of how 

parametric models are typically employed in architecture projects, the 

slightly atypical nature of the three case studies means that they touch on 

many of the major issues concerning parametric modelling. In aggregate, 

these cases make up what Robert Stake (2005, 446) calls a “collective 

case study” where multiple projects “are chosen because it is believed 

that understanding them will lead to better understanding, and perhaps 

better theorising, about a still larger collection of cases.” My intention 

in selecting the case studies has been to choose three situations where 

key challenges of parametric modelling are likely to be exhibited because 

I believe understanding the relationship between parametric modelling 

and software engineering in these challenging circumstances may lead to 

a better understanding of this relationship more generally.
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4.2	 Research Instruments

A research instrument, as defined by David Evan and Paul Gruba (2002, 85), 

is any technique a “scientist might use to carry out their ‘own work’.” 

Typical examples include interviews, observations, and surveys. My ‘own 

work’ is to understand how knowledge taken from software engineering 

impacts the flexibility of the parametric models from the various case 

studies. To help me carry out this work, ideally there would be a research 

instrument for measuring parametric flexibility. Unfortunately, none exist.

Flexibility concerns, at its essence, the ease with which a model can change. 

In a book titled Flexible, Reliable Software, Henrik Christensen (2010, 31) 

argues that all models can be changed since “any software system can be 

modified (in the extreme case by throwing all the code away and writing 

new software from scratch).” These extreme cases are fairly easy to identify: 

they are the moments when the designer has no other option but to rebuild 

the model (such as the examples discussed in chapter 2.3). Yet, there is a 

nuanced spectrum of flexibility leading up to this extreme. Christensen 

(2010, 31) says that while any model can be changed “the question 

is at what cost?” This is a question Boehm, Paulson, and MacLeamy all 

asked when they created their cost of change curves. Ostensibly, the cost 

of a modification may seem synonymous with the time taken to make 

a modification – if a model facilitates faster changes then presumably 

these changes cost less and the model is therefore more flexible than the 

alternatives. But the time taken to make a change is only one component 

of any particular modification’s cost. If a change results in a model that 

is more complicated, less flexible, and more difficult to share, the long-

term cost may be significantly higher than simply the time the change 

took to make. Software engineers call the combination of factors: code 

quality. In the following pages I outline some of the key quantitative and 

qualitative research instruments for measuring code quality. Collectively 

these instruments help triangulate an understanding of flexibility that 

goes beyond simply measuring how long it takes to make a change.
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4.3	 Quantitative Flexibility

In an attempt to understand software quality, software engineers have 

invented numerous quantitative methods for evaluating various aspects 

of their code. There are at least twenty-three unique measures of software 

quality categorised in Lincke and Welf’s (2007) Compendium of Software 

Quality Standards and Metrics, and over one hundred in the ISO/IEC 9126 

standard for Software Product Quality (ISO 2000). While many of these 

metrics are only applicable in specific circumstances,1 a few are used 

almost universally by software engineers. In the following paragraphs I 

take six of the key quantitative metrics and explain how they apply to 

parametric modelling.

Construction Time

Construction time measures the time taken to build a model from scratch. 

Clearly there are benefits to a shorter construction time, particularly if a 

model gets rebuilt frequently during a project. Different users are likely 

to have different construction times since the user’s familiarity with a 

modelling environment helps determine how quickly they can build a 

model. In general, the construction time for a parametric model is often 

longer than with other modelling methods because the process of creating 

parameters and defining explicit functions typically requires some degree 

of front-loading (see chap. 2.3), which is often recouped through shorter 

modification times.

Modification Time

The modification time measures the time taken to change the model’s 

outputs from one instance to another. Shorter modification times allow 

designers to make changes more quickly, which is one of the principle 

reasons for using a parametric model. Changes may involve modifying 

the values of the model’s parameters and they may involve the generally 

more arduous process of modifying the model’s explicit functions. When 

designers talk about trying to ‘anticipate flexibility’ (see chap. 2.3) they 

are normally talking about reducing the subsequent modification time by 

arranging the model so that changes occur through manipulations of the 

parameters rather than the often slower manipulations of the functions. 

An important point here is that modification time is highly dependent 

1	 The ISO/IEC 9126 standard has metrics for everything from how easy the help system 
is to use, to how long the user waits while the code accesses an external device.
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upon the model’s organisation, and particularly how this is impacted by 

the vestigial buildup of changes. Furthermore, as with construction time, 

the user’s familiarity with a model and modelling environment has a great 

bearing on the modification time.

Latency

Latency is the period of time the users waits – after making a change – 

to see the model’s latest output. The latency is caused by the computer 

performing the calculations necessary to generate the model’s output. 

Often these calculations result in an imperceptible latency, but on 

computationally intensive models the latency can last minutes and even 

hours. Latency is important because designers sometimes fail to observe 

changes to a model, particularly if there is a pause between making a change 

and the change becoming visible (see chap. 2.3; Nasirova et al. 2011; Erhan, 

Woodbury, and Salmasi 2009). For a model to feel interactive, research 

suggests that the latency should ideally be less than a tenth of a second 

and certainly not much more than one second (Miller 1968, 271; Card, 

Robertson, and Mackinlay 1991, 185). In many cases this is impossible 

given the computational demands of various geometric calculations, the 

limitations of computer hardware, and the bottlenecks in the underlying 

algorithms of parametric modelling environments.

Dimensionality

Dimensionality is a tally of a model’s parameters. Or, put another way, 

the number of dimensions in the model’s search space. In chapter 2.3 I 

explained how a designer has to balance a model’s dimensionality since, 

on one hand, parameters can help improve modification times (a higher 

dimensionality is better) and yet, on the other hand, too many parameters 

makes finding and modifying any individual parameter unwieldy (a lower 

dimensionality is better). Therefore, an ideal parametric model would 

encompass all the variations the designer wants to explore within the 

smallest dimensionality possible.
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Size

Software engineers commonly measure a program’s size by counting 

the lines of code (LOC). It is a somewhat imprecise measure because 

programs can be rewritten to occupy more or fewer lines of code. This led 

Steven McConnell (2006, 150) to argue, “the LOC measure is a terrible 

way to measure software size, except all other ways to measure size are 

worse.” While there is a degree of imprecision, the LOC measurement is a 

frequently used instrument for quickly understanding the relative size of 

software. Ordinarily, a smaller LOC is better since the LOC measurement 

correlates highly with both code complexity (van der Meulen and Revilla 

2007) and the number of coding errors (El Emam et al. 2001) – in essence, 

more lines of code provide more opportunities for things to go wrong.

In my research I use the physical lines of code measure – the number of 

lines of code actually written in the programming environment. In visual 

programming languages a node can be considered roughly equivalent to 

a line of code. Thus, I measure the size of visual programs throughout 

my research by counting the number of nodes. This allows comparisons 

between various visual programs however, given the differences between 

textual lines of code and visual nodes, comparisons cannot be made 

between the sizes of textual and visual programs.

Cyclomatic Complexity

Cyclomatic complexity is a core software engineering metric for measuring 

code structure. In technical terms, the cyclomatic complexity is the number 

of independent paths through a directed acyclic graph (DAG). This can 

be seen visually in figure 17 & 18. The cyclomatic complexity is typically 

calculated using Thomas McCabe’s (1976, 314) formula:

Where:

•	 G: the graph.

•	 e: number of edges. I count parallel edges between identical nodes 

(duplicate edges) as a single edge.

•	 n: number of nodes. I do not count non-functional nodes such as 

comments in text boxes.

•	 p: number of independent graphs (parts).



78

Which (assuming p to be 1) simplifies to:

McCabe’s formula assumes the DAG has only one input node and one 

output node, which is infrequently the case with parametric models. 

In an appraisal of common modifications to McCabe’s original formula, 

Henderson-Seller and Tegarden (1994, 263) show that “additional 

(fictitious) edges” can be introduced to deal with multiple inputs and 

outputs. Thus the cyclomatic complexity formula becomes:

4
5
1
1

Edges
Nodes
Paths
Complexity

6
5
3
3

Edges
Nodes
Paths
Complexity

Figure 17: A directed 
acyclic graph comprised 
of a single path, which 
gives it a cyclomatic 
complexity of one.

Figure 18: A graph with 
the same number of 
nodes as in figure 17 but 
with three distinct paths 
(each colour coded). This 
graph therefore has a 
cyclomatic complexity 
of three.

Where:

•	 i: number of inputs (dimensionality).

•	 u: number of outputs.

The cyclomatic complexity indicates how much work is involved in 

understanding a piece of code. For instance, the DAG in figure 17 can 

be understood by reading sequentially along the single path of nodes. 

But understanding the more complicated DAG in figure  18 requires 

simultaneously reading through three different paths as they diverge and 

converge back together. While it may be possible to comprehend how three 

paths interact, this becomes evermore difficult as the complexity increases. 

As a result, McCabe (1976, 314) recommends restructuring any code with 

a cyclomatic complexity greater than ten (an idea I explore further in 

chapter 6). This limit has been reaffirmed by many studies including the 

United State’s National Institute of Standards and Technology who write, 

“the original limit of 10 as proposed by McCabe has significant supporting 

evidence” (Watson and McCabe 1996, sec. 2.5).
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Applying Quantitative Metrics

Quantitative metrics lend themselves to statistical analysis. If a collection 

of code samples are each quantitatively measured, the measurements can 

be aggregated together and analysed to help identify general trends in 

the sampled population. This type of analysis does not appear to have 

been performed in any previous study on parametric models. As a result, 

the current understanding of parametric modelling is largely confined to 

firsthand accounts of working with specific parametric models (referred 

to in chapter 2.3). This leaves significant gaps in the understanding of 

parametric modelling and many basic questions – such as what is the 

average size of a parametric model or how complicated is the typical 

parametric model – remain unanswered. In the following pages I attempt 

to answer some of these basic questions and establish baselines for the key 

quantitative metrics I previously discussed (parts of this study were first 

published in Davis 2011b and then subsequently in Davis et al. 2011b).

Assembling a representative collection of parametric models is difficult 

since researchers generally only have access to parametric models created 

by themselves or their colleagues –  a likely reason no previous study 

has quantitatively analysed a group of parametric models. But recently, 

with the advent of websites enabling communities of designers to share 

parametric models publicly, large collections of parametric models have 

been made available. One such website is McNeel’s Grasshopper online 

forum (grasshopper3d.com) where, between 8 May 2009 and 22 August 

2011, 575 designers shared 2041 parametric models. The models are all 

created in the Grasshopper modelling environment and tend be either a 

model a designer is having problems with or a model a designer thinks will 

solve another’s problem. While this collection is not strictly representative 

of parametric modelling generally, it is a significant advancement over 

any previous study to be able to analyse, for the first time, how a large 

number of designers organise models created in a popular parametric 

modelling environment.

Method

To analyse the models publicly shared on the Grasshopper forum, I first 

download the 2041 parametric models. The oldest model was from 8 May 

2009 and created with Grasshopper 0.6.12, and the most recent model 

was from 22 August 2011 and created with Grasshopper 0.8.0050. All the 
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Figure 19: 
Distribution of model 
size in population 
of 2002 parametric 
models.

Figure 21: 
Distribution of model 
cyclomatic complexity 
in population of 
2002 parametric 
models.

Figure 20: 
Distribution of 
model dimensionality 
in population of 
2002 parametric 
models.
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models were uploaded to the forum in the proprietary .ghx file format. 

I reverse engineered this format and wrote a script that extracted the 

parametric relationships from each file and parsed them into a directed 

acyclic graph. Thirty-nine models were excluded in this process, either 

because the file was corrupted or because the model only contained 

one node (which distorted measurements like cyclomatic complexity). 

The graphs of the remaining 2002 models were then each evaluated with 

the previously discussed quantitative metrics. The measurements were 

then exported to an Excel spreadsheet ready for the statistical analysis. 

In the analysis I have favoured using the median since the mean is often 

distorted by a few large outliers. Each of the key quantitative metrics is 

discussed below.

Size

The sizes of the 2002 sampled Grasshopper models vary by a number of 

orders of magnitude; the smallest model contains just two nodes while the 

largest model contains 2207 nodes (fig. 22). The distribution of sizes has 

a positive skew (fig. 19) with the median model size being twenty-three 

nodes. I suspect the skew is partly because many of the models uploaded 

to the Grasshopper forum are snippets of larger models. The median may 

therefore be slightly higher in practice. Even with a slightly higher median, 

Model-1945 
Nodes:	 2207 
Edges:	 2544 
Inputs:	 1140 
Outputs:	 89 
Complexity:	 1566

Figure 22: Model-1945, 
the largest and most 
complicated model in 
the sample. With over 
one thousand inputs, 
changing any part of 
the model is a guessing 
game. I have written 
previously (Davis 2011b) 
about how complexity 
can be reduced in 
this particular model 
by refactoring the 
duplicated elements 
and condensing the 
inputs into just twenty 
critical factors.
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Rank % nodes Name Function

1 12.6 Number Slider Select numeric value

2 7.4 Panel Read/write text

3 4.8 List Item Select item in list

4 2.5 Point Import point

5 2.4 Curve Import curve

6 2.3 Line Import line

7 2.3 Move Move geometry

8 1.8 Scribble Draw on graph

9 1.7 Series Create series of numbers

10 1.6 Point XYZ Create a point

the Grasshopper models (including the three models that contain more 

than one thousand nodes) are very modest compared to those seen in the 

context of software engineering.

Given the numbers of nodes in a model, it is telling to see the typical 

function of these nodes. I took the 93,530 nodes contained within the 

2002 Grasshopper models and ranked them based on function (the top 

ten are shown in figure 23). The most commonly used node was Number 

Slider [1], which is a user interface widget for inputting numeric values. 

Two more interface widgets are also feature highly on the list: Panel [2], 

which allows users to write and read textual data; and Scribble [8], which 

lets users explain a DAG by adding text. Also highly ranked were two nodes 

for managing data arrays: List item [3] and Series [9]. The fourth, fifth, and 

sixth most popular nodes are all ways of inputting geometry and managing 

the flow of data. The most popular node with a geometric function is Move 

[7], which is followed by Point XYZ [10]. In fact, only six of the twenty-

five most popular nodes are geometric operations. This  demonstrates 

that parametric modelling, at least within Grasshopper, is as much about 

inputting data, managing data, and organising the graph as it is about 

modelling geometry.

Figure 23: Table of the 
most commonly used 
node types. These ten 
node types account for 
40% of the 93,530 nodes 
contained within the 
2002 sampled models.



Model-660 
Nodes:	 12 
Edges:	 12 
Inputs:	 1 
Outputs:	 2 
Complexity:	 3

Model-1983 
Nodes:	 12 
Edges:	 12 
Inputs:	 2 
Outputs:	 1 
Complexity:	 3

Model-2015 
Nodes:	 11 
Edges:	 12 
Inputs:	 1 
Outputs:	 1 
Complexity:	 3

Figure 24: A comparison of models with different cyclomatic complexities. All six models 
are of a similar size and fairly representative of other models with equivalent complexities. 
This page: three simple models each with a cyclomatic complexity of three. Facing page: 
three slightly more complicated models with a cyclomatic complexity of either nine or ten.



Model-1913 
Nodes:	 12 
Edges:	 16 
Inputs:	 4 
Outputs:	 2 
Complexity:	 10

Model-313 
Nodes:	 11 
Edges:	 15 
Inputs:	 4 
Outputs:	 2 
Complexity:	 10

Model-1860 
Nodes:	 10 
Edges:	 13 
Inputs:	 4 
Outputs:	 2 
Complexity:	 9



Dimensionality (inputs)

1 10 30 100 1000
Model Size

100

10

1

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

1 10 100 1000

100

10

1

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

Outputs

Figure 25: Model 
complexity plotted 
against size for 2002 
parametric models. 
The distribution shows 
a strong correlation 
between size and 
complexity (r=0.98). The 
graph also shows that 
for models with more 
than thirty nodes it is 
inevitable they have a 
cyclomatic complexity 
greater than ten.

Figure 26:

 Model complexity 
plotted against 
dimensionality for 2002 
parametric models.

 Model complexity 
plotted against the 
number of outputs for 
2002 parametric models.

The distribution shows 
that the number of 
model outputs has little 
bearing on complexity 
(r=0.71) since for any 
given number of outputs 
there are a range of 
complexities associated 
(the vertical spread of 
red dots). In comparison, 
the number of inputs 
has a stronger (r=0.91) 
relationship to model 
complexity (the blue 
dots are more linear and 
less vertically spread).
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Dimensionality

The vast majority of models have a similar dimensionally; 75% possess 

between one and eleven inputs with the median being six inputs (fig. 20). 

Seventeen outliers have more than one hundred inputs and the most 

extreme model contains 1140 inputs. When examining the models with a 

high dimensionality, it is strikingly difficult to understand what each input 

does and even more difficult to change the inputs meaningfully en masse 

(often the only way is to guess and check). I suspect the comparatively 

low dimensionality shown in the vast majority of models may be because 

designers can only comfortably manipulate a few parameters at a time. 

Therefore, while parameters are a key component of parametric modelling 

(some would say the defining component: see chap. 2.1) the majority of 

designers use parameters sparingly in their models.

Cyclomatic Complexity

There is a high variance in the cyclomatic complexity of the sampled 

models. The median complexity is thirteen (fig. 21) but the range extends 

from simple models with a complexity of just one, to extremely complex 

models with a complexity of 1566 (fig. 22). Within this variance, 60% of 

models have a complexity greater than ten – the limit McCabe (1976, 314) 

suggested. The differences between complex and simple models are visually 

apparent in figure 24 where the two extremes are displayed side-by-side. 

In figure 24, the simple models have orderly chains of commands while 

the models with a higher cyclomatic complexity have interwoven lines 

of influence that obfuscate the relationships between nodes. This seems 

to indicate that cyclomatic complexity is effective in classifying the 

complexity of a parametric model.

A model’s cyclomatic complexity and size are strongly correlated (r=0.98;2 

fig. 25). This correlation is significant because it indicates that while a 

parametric model can theoretically be both large and simple, in actuality, 

large models tend to be complex (all the models with more than thirty 

nodes had a cyclomatic complexity greater than McCabe’s limit of ten). A 

similar correlation exists in software engineering. One such example is van 

der Meulen and Revilla’s (2007, 206) survey of fifty-nine textual programs 

that found cyclomatic complexity and LOC to have a correlation of r=0.95. 

2	 r is Pearson’s coefficient. A value of 1 indicates that two variables are perfectly correlated 
(all sampled points fall on a line), a value of 0 indicates that two variables are not not 
correlated in any way (one does not predict the other), and a negative value indicates 
an inverse correlation.
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This correlation suggests that complexity is an inevitable by-product of 

size in both software engineering and parametric modelling. Similar 

relationships exist for a model’s dimensionality (r=0.91) and outputs 

(r=0.71), although neither correlates with complexity to the same degree 

as a model’s size (fig. 25 & 26).

Learning from Quantitative Data

This study is an important first step towards understanding the properties 

and variations of a typical parametric model. The 2002 Grasshopper models 

surveyed show that parametric models are generally small and complex. 

The average model contains twenty-three nodes and even the largest 

models, with just over one thousand nodes, are modest in the context 

of software engineering. The size of the model is highly correlated with 

the model’s complexity, which tends to be very high overall. While one 

may intuitively expect that the majority of a parametric model consists 

of parameters and geometry, this study shows that organising the graph 

and managing data are often the most common components of parametric 

models created in Grasshopper. Parameters tend to be used surprisingly 

sparingly, with the vast majority of models only containing between one 

and eleven parameters.

Another important outcome from this survey is the validation of the 

quantitative metrics. The study demonstrates that nodes are a good proxy 

for a model’s size and that the dimensionality can reveal unintuitive insights 

regarding the use of parameters in parametric models. Furthermore, the 

cyclomatic complexity seems to fairly accurately differentiate between 

simple and complex models. However, despite the validation of these 

quantitative metrics, they still only tell a narrow part of a model’s story; a 

story that can be further triangulated with qualitative measures.
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4.4	 Qualitative Flexibility

Many aspects of parametric flexibility elude quantitative measurement. 

While it is useful to know the size of a model or the complexity of a 

model, by themselves, these measurements give an incomplete picture. 

Bertrand Meyer (1997, 3) argues, in his seminal book Object-Oriented 

Software Construction, “software quality is best described as a combination 

of several factors.” Meyer (1997, chap. 1) spends the first chapter of his 

book expounding the following ten factors of “software quality”:

1.	 Correctness: ability of software products to perform their exact tasks, 

as defined by their specification.

2.	 Robustness: the ability of software systems to react appropriately to 

abnormal conditions.

3.	 Extendability: the ease of adapting software products to changes 

of specification.

4.	 Reusability: the ability of software elements to serve for the 

construction of many different applications.

5.	 Compatibility: the ease of combining software elements with others.

6.	 Efficiency: the ability of a software system to place as few demands as 

possible on hardware resources.

7.	 Portability: the ease of transferring software products to various 

hardware and software environments.

8.	 Ease of use: the ease with which people of various backgrounds and 

qualifications can learn to use software products and apply them to 

solve problems.

9.	 Functionality: the extent of possibilities provided by a system.

10.	Timelessness: the ability of a software system to be released when or 

before its users want it.

While other authors have constructed similar lists of software quality 

(Meyer 1997, 19-20), Meyer’s list holds significant cachet in software 

engineering because it belongs to one of the most cited books in 

computer science.3 There are notable correlations between Meyer’s list 

and the ISO/IEC standard for Software Product Quality (ISO 2000), with 

Meyer’s efficiency, portability, ease of use, and functionality being word-

for-word identical to the ISO categories. In this thesis I take the factors 

3	 CiteSeer (2012) say Object-Oriented Software Construction is the sixty-second most cited 
work in their database of over two million computer science papers and books.



89

Meyer identifies as being crucial to software quality and I use them as a 

structure for qualitative evaluations of parametric models. In particular, 

I make reference to Meyer’s concepts of correctness [1], extendability [3], 

reusability [4], efficiency [6], ease of use [8], and functionality [9], which 

I will now briefly explain in more detail.

Correctness

Correctness concerns whether software does what is expected. In some 

circumstances correctness is obvious; if you create a parametric model to 

draw a cube, the model is correct if it draws one. But in most circumstances 

correctness is non-trivial since it can be difficult to determine what is 

expected and to ensure this happens through a range of input parameter 

values. Software engineers have developed a range of methods for 

ascertaining whether software is correct – unit testing being one notable 

example. While I suspect architects would benefit from adopting these 

practices, this is a large area of research outside the scope of my thesis 

(as discussed in chapter 3). For the remainder of this thesis I have used 

correctness to denote that a parametric model is free from any major 

defects; it is not creating spheres when it should be creating cubes.

Extendability

Extendability is essentially a synonym for flexibility; the ease with which 

software adapts to changes. Meyer (1997, 7) says extendability correlates 

with size, since “for small programs change is usually not a difficult issue; 

but as software grows bigger, it becomes harder and harder to adapt.” 

This notion corresponds to what other authors have written about the 

software crisis (see chap. 3.1) and it corresponds to the relationships 

between software size and cyclomatic complexity that I have empirically 

shown. Meyer (1997, 7) goes on to argue that extendability can be 

improved by ensuring the code has a “simple architecture,” which can be 

achieved by structuring the code with “autonomous modules.” While I 

explore extendability throughout this thesis, I pay particular attention to 

the structure of parametric models in chapter 6.

Reusability

Reusability pertains to how easily code can be shared, either in part or 

in whole. Meyer (1997, 7) notes that “reusability has become a pressing 

concern” of software engineers. As I have shown in chapter  2.3, the 

reusability of parametric models is also a concern of many architects.
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Efficiency

Efficiency describes how much load a program places on hardware. 

This is particularly pertinent to architects because a program’s efficiency 

helps determine its latency, which, in turn, affects change blindness (see 

chap. 2.3). In extreme cases the model’s efficiency may even determine 

its viability, since certain geometric calculations are so computationally 

demanding that inefficient models can slow them to the point of 

impracticality. However, Meyer (1997, 9) tells software engineers “do 

not worry how fast it is unless it is also right” and warns, “extreme 

optimizations may make the software so specialized as to be unfit for 

change and reuse.” Thus, efficiency can be important but it needs to be 

balanced against other attributes like correctness and reusability.

Ease of Use

Ease of use is fairly self-explanatory. For architects, ease of use applies 

to both the modelling environment and the model. A  modelling 

environment’s ease of use concerns things like user interface and 

modelling workflow. A designer familiar with a modelling environment 

will tend to find it easier to use, which impacts how fast they can construct 

models (construction time) and how competently they can make changes 

(modification time). In addition to the modelling environment being easy 

to use, the model itself needs to be easy to use. I have spoken previously 

about the importance of dimensionality and complexity when it comes to 

understanding and changing a model. Meyer (1997, 11) echoes this point, 

saying a “well thought-out structure, will tend to be easier to learn and use 

than a messy one.”

Functionality

Functionality to Meyer (1997, 12) denotes “the extent of possibilities 

provided by a system.” Like ease of use, functionality is applicable to both 

the modelling environment and the model. The key areas of functionality 

in a modelling environment include the types of geometry permissible, 

the types of relationships permissible, and the method of expressing 

relationships. Modelling operations that are easy to implement in one 

environment may be very difficult (or impossible) in another due to 

variations in functionality. Likewise, changes easily permissible in one 

environment may be challenging in another. Therefore, the functionality 

of a modelling environment helps determine the functionality of the 

parametric model. This is a determination that often comes early in the 
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project since changing the modelling environment mid-project normally 

means starting again.

Using Qualitative Metrics

All of the qualitative metrics require some form of consideration and 

judgment in their application. Some have established protocols of 

observation –  for example, there are well-researched ways to conduct 

usability studies in order to analyse ease of use. Other qualitative 

assessments can be logically deduced through comparisons – for 

example, the functionality of a modelling environment can be evaluated 

by comparing its features to those of other environments. But other 

attributes, like extendability, fall upon expert judgment to analyse. 

None of these are definitive measurements, for even the quantitative 

measurements are distorted by what they cannot measure. However, the 

qualitative measurement do provide a vocabulary of attributes to begin 

capturing the qualities of a parametric model.
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4.5	 Conclusion

Meyer (1997, 15) stresses that software metrics often conflict. Each metric 

offers one perspective, and improvements in one perspective may have 

negative consequences in another. For example, making a model more 

efficient may make it less extendible, and making a model more reusable 

may harm the latency. Furthermore, measured improvements may not 

necessarily manifest in improved flexibility since flexibility is partly a 

product of chance and circumstance; an apparently flexible model (one that 

is correct, easy to use, and with a low cyclomatic complexity) can stiffen 

and break whilst a seemingly inflexible model may make the same change 

effortlessly. This uncertainty makes any single measure of flexibility – at 

best – an estimation of future performance.

To help mitigate the biases of any single metric, I plan to aggregate a 

triangulated perspective of the case studies using a variety of metrics. 

In this chapter I have discussed a range of metrics applicable to parametric 

modelling: from quantitative metrics to measure time, size, and complexity; 

to qualitative metrics to begin discussing qualities like correctness, 

functionality, and reusability. By gathering these measurements together 

in this chapter I have begun to articulate a vocabulary for discussing 

parametric models; a vocabulary that goes beyond the current binaries 

of failure and success. Using parts of this vocabulary I have been able 

to analyse, for the first time, a large collection of parametric models in 

order to get a sense of the complexity, composition, and size of a typical 

parametric model. This demonstrates the viability of quantitatively 

measuring qualities like cyclomatic complexity but also demonstrates why 

quantitative metrics alone are not enough to observe the case studies.

In addition to the suite of metrics, this chapter has also identified three 

case studies to test various aspects of the software engineering body of 

knowledge. The case studies have been selected not because the cases are 

necessarily representative of challenges architects typically encounter, but 

because cases provide the best opportunity to learn about these challenges. 

Each of the following three chapters contains one of these case studies and 

makes use of a variety of the metrics discussed in this chapter.
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Case studies

The following three chapters document a case study each. The case studies 

take the software engineering concepts discussed in chapter 3.2 and apply 

them to architecture projects where their performance is measured using 

the research instruments discussed in chapter 4.

		  Case A

Chapter:		 5

Main Subject:	 Logic Programming

Main Project:	 Realignment of the Sagrada Família frontons

		  Case B

Chapter:		 6

Main Subject:	 Structured Programming

Main Project:	 Designing Dermoid

		  Case C

Chapter:		 7

Main Subject:	 Interactive Programming

Main Project:	 Responsive Acoustic Surfaces & The FabPod
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5	 Case A: Logic 
Programming

Project: Realignment of the Sagrada Família frontons.

Location: Barcelona, Spain.

Project participants: Daniel Davis, Mark Burry, and the Basílica i Temple 

Expiatori de la Sagrada Família design office.

Related publication:

Davis, Daniel, Jane Burry, and Mark Burry. 2011. “The Flexibility 

of Logic Programming.” In Circuit Bending, Breaking and 

Mending: Proceedings of the 16th International Conference on 

Computer Aided Architectural Design Research in Asia, edited 

by Christiane Herr, Ning Gu, Stanislav Roudavski, and 

Marc Schnabel, 29–38. Newcastle, Australia: The University 

of Newcastle.
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5.1	 Introduction

High above the main crossing of Basílica de la Sagrada Família, Antoni 

Gaudí planned a tall central tower dedicated to Jesus Christ (fig. 27). 

The tower marks the basilica’s apex of 170 metres and the culmination of 

a design that has been in development for over one hundred years. Today, 

almost eighty-five years after Gaudí’s death in 1926, the team of architects 

continuing his work is preparing to construct the central tower.

At the base of the tower sit three matching gabled windows, each seventeen 

metres high (fig. 28). The stone head to these windows is called a fronton 

by the project team (fronton being Catalan for gable). The fronton design, 

Figure 27: Lluís Bonet 
i Garí’s interpretation 
(circa 1945) of what 
the Sagrada Família 
would look like when 
completed. The tall 
central tower capped by 
a cross is dedicated to 
Jesus Christ.
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Figure 28: A massing 
model of the central 
tower with the frontons 
highlighted in red.
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Figure 29: The original 
fronton model (red) 
overlaid with the 
corrected model (grey). 
The slight distortions in 
the original model cause 
some parts to disappear 
behind the corrected 
model while other parts 
push out and envelop the 
corrected model.

Figure 30:

 Plan of original 
fronton model.

 Plan of corrected 
model. The two plans 
deviate 6mm on average.
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like everything else on the church, has stretched over a period of years. The 

progression of software in this time has seen the digital fronton model pass 

from one CAD version to the next. At some stage during this process, the 

parametric relationships in the fronton model were removed and the model 

became explicit geometry. In 2010, as the project team were preparing the 

fronton’s construction documentation, they came across a curious problem 

with the model: passing the model between software had caused slight 

distortions. With the parametric relationships removed, fronton faces that 

should have been planar contained faint curves, lines that should have 

been orthogonal were a couple of degrees off, and geometry that should 

have been proportional was just a touch inconsistent (fig. 29 & 30). None 

of these distortions were apparent at first glance and on a more routine 

project they probably would not be of concern. However, on a project as 

meticulous as the Sagrada Família – where the design has germinated for 

decades – it was vitally important to remove any imperfections, or at least 

get them within the tight tolerances of the seven-axis robot scheduled 

to mill the stone. My task was to straighten the explicit geometry in 

the fronton model by converting it back into a parametric model and 

reasserting the original parametric relationships.

The realignment of the frontons presents a unique parametric modelling 

case study. Besides contributing to one of the earliest examples of 

parametric architecture, the project demands an extraordinary level of 

precision, while the ambiguity of what constitutes straightened requires 

collaboration with team members in Melbourne and Barcelona. This case 

study is not necessarily representative of typical parametric architecture 

projects but, as I discussed in chapter 4.1, the project’s unique circumstances 

offer what Robert Stake (2005, 451) calls “the opportunity to learn.” In this 

chapter I observe how the demands of the fronton realignment manifest 

within two parametric models. In particular, I examine how the language 

paradigm of the parametric model affects its behaviour (following on 

from chapter 3.2, where I noted most parametric models are based on a 

narrow range of language paradigms). I begin this chapter by discussing 

the taxonomy of possible language paradigms and identifying how the 

rarely used logic programming paradigm may be applicable to parametric 

modelling. I then twice realign the frontons, once with a conventional 

dataflow parametric model, and once with a parametric model based on 

logic programming. The differences between these two language paradigms 

form the discussion of this chapter.



99

Figure 31: Van Roy’s 
photograph of the 
Sagrada Família on 
the cover of Concepts, 
Techniques, and Models of 
Computer Programming 
(Van Roy and Haridi’s 
2004). The Japanese 
edition uses a slightly 
different photograph of 
the Sagrada Família.

5.2	 Programming Paradigms

The Sagrada Família graces the cover (fig.  31) of Peter Van Roy and 

Seif Haridi’s (2004) seminal book on programming languages entitled 

Concepts, Techniques, and Models of Computer Programming. Van Roy took 

the photograph and chose it for the cover because “the still unfinished 

Expiatory Temple of the Sagrada Família in Barcelona is a metaphor for 

programming” (Van Roy, n.d.). Van Roy and Haridi never foresaw, however, 

that the opposite maybe true, that the programming paradigms they 

discuss in their book could help designers of the church on its cover. In the 

preface Van Roy and Haridi (2004, xx) allude to another architect, Mies van 

der Rohe, in a section about programming paradigms titled “more is not 

better (or worse), just different.” A programming paradigm in this context 

is the set of underlying principles that shape the style of a programming 

language. For Van Roy and Haridi, these styles are not better nor worse, 

just different to one another. It is this difference that I consider in relation 

to the parametric models of the Sagrada Família.

Programming paradigms are roughly divided by Van Roy and Haridi (2004) 

as well as others like Appleby and VandeKopple (1997) into imperative 

paradigms or declarative paradigms (fig.  32). Imperative languages 

describe a sequence of actions for the computer to perform – much like 

imperative verbs in the English language. In contrast, declarative languages 

“define the what (the results we want to achieve) without explaining the 

how (the algorithms needed to achieve the results)” (Van Roy and Haridi 
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2004, 114). Imperative and declarative languages can be further classified 

into more specific paradigmatic subcategories, as shown in figure 32. Most 

programming languages are based on at least one of these subcategories, 

and many spread out to embody multiple paradigms within the one 

language – more is not better (or worse).

As discussed in chapter 3.2, the languages favoured by designers tend 

to occupy a narrow range of possible paradigms (fig.  32). The major 

textual CAD programming languages are all predominantly imperative1 

with a bias towards procedural imperativeness. This is not surprising 

considering that the world’s five most popular programming languages 

on the TIOBE (2012) index are also predominantly imperative2 (although 

perhaps more spread out on the imperative spectrum). In contrast, visual 

programming languages tend towards declarativeness. The major visual 

CAD programming languages all reside in a very narrow subsection of 

1	 These include: 3dsMax: Maxscript; Archicad: GDL; Digital Project: Visual Basic; Maya: 
Maya Embedded Language; Processing: Java; Revit: Visual Basic & Python; Rhino: Visual 
Basic & Python; Sketchup: Ruby.

2	 As of May 2012 the worlds five most popular programming languages, as measured by 
TIOBE (2012), are: C, Java, C++, Objective-C, and C#.

Procedural Object 
Oriented

Parallel 
Processing

FunctionalLogic Database

Imperative Declarative

Paradigms

Dataflow

Grasshopper
GC 

Houdini
MaxMsp

Maxscript

AutoCAD .NET
MEL

Processing
Revit Python
Rhino Python 

GDL
Rhino VB

Digital Project VB

Figure 32: The 
programming 
languages architects use 
categorised by Appleby 
and VandeKopple’s 
(1997, xiv) taxonomy of 
programming paradigms.

The two paradigms 
explored in this 
case study.
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declarative programming known as dataflow programming.3 In this chapter 

I compare two declarative paradigms – dataflow programming and logic 

programming – as a means to construct the parametric models of the 

Sagrada Família frontons.

5.3	 Challenges of Dataflow

In the introduction to Data Flow Computing, John Sharp (1992, 3) 

defines a dataflow program as “one in which the ordering of operations 

is not specified by the programmer, but that is implied by the data 

interdependencies.” In other words, a dataflow language describes the 

connections between computational operations, which is different to the 

imperative approach of listing operations in the order they should occur. 

When a dataflow program is run, the computer infers the precise order of 

operations from the stated connections between operations.

The quintessential example of a dataflow program is a spreadsheet. 

The user of a spreadsheet specifies how cells connect and how cells should 

process data but leaves the computer to decide the precise order in 

which cells get updated. The same principle applies to certain parametric 

modelling software, like Digital Project. Users of this software specify a 

network of connections between geometric operations while the computer 

manages the exact sequencing and execution of these operations. 

Many visual programming languages operate on a similar principle since 

the connections between operations can be represented using a type of 

flow-chart know as a Directed Acyclic Graph (DAG). The two components 

of a DAG are nodes and directed edges (fig. 33). In a visual program a 

node represents an operation and a directed edge 

represents a connection (a flow of data between two 

operations), which is how the visual programming 

environments used by architects (Grasshopper, 

GenerativeComponents, and Houdini) represent 

dataflow programs.4

3	 These include: Grasshopper; GenerativeComponents; Houdini; and MaxMsp.
4	 I discuss, in chapter 7, an alternative way to represent a dataflow program textually 

rather than visually.

A B

Node (parent).
Edge.
Node (child).

Figure 33: The parts of a DAG.
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A critical component of dataflow programming is that the flow of data has 

a direction specified by the programmer. In defining the direction of data, 

the source of data is termed the parent and the receiver of data is termed 

the child (fig. 33). The direction has important implications since the 

programmer is not just specifying that operations are connected but also 

necessarily giving a hierarchy to these connections. As a consequence, if the 

programmer reverses the flow of data – turning children into parents and 

parents into children – they risk disrupting the program’s structure. For 

example, the dataflow program in figure 34 generates a line between two 

parent points. If the data in this model is reversed (a point becomes a child 

of the line) the change requires both deleting nodes and adding new nodes 

(fig. 35). Even though the changes introduce no new geometry, they agitate 

the hierarchy so much that starting over would be as easy as changing the 

model in figure 34 to match the model in figure 35. These disruptions to 

the hierarchy would be avoidable if the designer did not need to specify the 

direction of connections and instead only needed to specify that two things 

are connected. In this case study I consider whether logic programming 

can help remove the need to specify the direction between operations in 

much the same way dataflow programming removes the need to specify 

an order of operations.

Point

Point Line

Point

Vect.

Point Line Point

Generates

Generates

Figure 33: The parts of a DAG.

Figure 35: Modifications 
to the DAG from 
figure 34. The geometry 
is the same but the 
connections have been 
changed: one of the 
points is now a child of 
the line. In the geometric 
model, the child point 
can no longer be moved 
directly since its location 
now depends on the 
line’s position (the 
parent of the point). 
While the geometry is 
the same as figure 34, 
the change in hierarchy 
requires adding and 
removing a number 
of nodes.

Figure 34: The 
relationship between a 
DAG and the geometry 
it generates. In the DAG 
the line is a child of the 
two points, accordingly, 
the line’s geometry 
depends entirely on the 
location of the points. 
Moving the geometry of 
either point would also 
move the line.

 Existing nodes.

 New nodes.

 Deleted nodes (from figure 34).
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5.4	 Logic Programming

Logic programming, like dataflow programming, fits into the declarative 

branch of programming paradigms (fig.  32). Defined by Sterling and 

Shapiro (1994, 9), the first part of “a logic program is a set of axioms, or 

rules, defining relations between objects.” These relations do not specify 

flows of data but rather express, in first order logic, statements of fact. For 

example, an axiom might be: A cat is an animal. The second part of a 

logic program is an interpreter that reads the axioms and logically deduces 

the consequences (Sterling and Shapiro 1994, 9).5 Using the above axiom, 

the interpreter might be asked what is an animal? to which it would 

deduce: cat.

At the genesis of logic programming, in the late 1960s and early 1970s, 

many expected logic programming’s formalisation of human reasoning 

to push humanity beyond its cognitive limitations (limitations that had 

ostensibly brought about events like software crisis). Robert Kowalski 

(1998) recalls his contemporaries during this period employing logic 

programming for ambitiously titled projects involving “natural language 

question-answering” (38) and “automated theorem proving” (39). The 

initial developments were promising with researchers discovering various 

ways to get computers to seemingly reason and respond to a series of 

questions, even if the questions were always confined to small problem 

domains (Hewitt 2009). The hope was that if a computer could answer a 

simple question like how many pyramids are in the blue box? then it would 

be possible to get a computer to answer a more difficult question like What 

does “cuantas pyramides se encuentran dentro de la caja azul” mean? But, as 

I have discussed in chapter 3, systems addressing small problems – be 

they computer programs or parametric models – do not always scale to 

address larger problems. The initial interest in logic programming waned as 

success with small, well-defined problems failed to bring about widespread 

success with larger problems. Today the most common logic programming 

5	 On the surface, there may appear to be many examples of logic programming used 
in CAD. For example, Sketchpad (Sutherland 1963), has a geometric constraint solver 
that allows users to define axioms between geometry. However, Sketchpad does not 
satisfy the definition of logic programming since the axioms are interpreted using 
numeric algorithms and an early form of hill climbing rather than through logical 
deduction (Sutherland 1963, 115-19). The logical deduction that forms the basis for 
logic programming was not invented until six years after Sketchpad.



104

language – Prolog – only ranks thirty-sixth on the TIOBE (2012) index of 

popular programming languages. Nevertheless, logic programming still 

finds niche applications in expert reasoning – particularly expert reasoning 

about relationships (for instance, IBM’s Jeopardy winning computer, 

Watson, was partly based on Prolog [Lally and Fodor 2011]).

In the architecture industry, logic programming followed a similar arc, 

albeit a few years behind what was happening in software engineering. 

Architectural researchers took the work done on spatial logic programming 

and enthusiastically applied it to a favourite problem of the time: room 

layout (Keller 2006). A paper typical of the period is Peter Swinsons’ (1982) 

optimistically named Logic Programming: A Computing Tool for the Architect 

of the Future. In this paper Swinson (1982, 104) demonstrates how Prolog 

can solve four different layout problems before concluding “this new way 

of programming does indeed hold much promise for the future” (a similar 

method is used by Márkusz [1982]). A flurry of interest followed in the 

1980s.6 In 1984, Gonzalez et al. demonstrated two-dimensional drafting 

using logic programming, which they found “more concise, more reliable, 

and clearer” as well as “more efficient” than imperative programming 

(Gonzalez et al. 1984, 74). Further examples of two-dimensional shape 

drawing were given by Brüderlin (1985) and subsequently Helm and 

Marriott (1986). A more comprehensive attempt to generate three-

dimensional models was made by Robert Woodbury (1990) using the 

ASCEND language, which is not strictly a logic programming language 

although it shares many similarities. The zenith for logic programming in 

architecture was arguably reached the same year with the publication of 

William Mitchell’s (1990) The Logic of Architecture.

Despite The Logic of Architecture’s success, it marks the beginning of the 

end. While Mitchell was able to apply his ideas retrospectively to Palladian 

villas, he never tested them on real architecture projects. Indeed, none 

of the papers I have referenced (or that I can find) discuss using logic 

programming on real architecture projects – even though many of them, 

like Swinson, were making confident proclamations that logic programming 

would become the “computing tool for the architect of the future” (Swinson 

1982). Much like the software engineers that came before them, these 

researchers all tested logic programming with small, idealised problems 

6	 For a complete history see: Fudos 1995.
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assuming the success of these small systems were representative of future 

successes at larger scales. The initial interest in logic programming waned 

(like it had done in software engineering a few years earlier) as success with 

small, well-defined problems failed to bring about widespread success with 

larger problems. Nevertheless, there are still a couple of recent examples 

of logic programming being used by researchers (still on small, idealised 

problems) including Martin and Martin’s PolyFormes tool (1999) and 

Makris et al. MultiCAD (2006). However, in contrast to the widespread 

imperative programming paradigm used by architects, logic programming 

never quite became the computing tool for the architect of the future. In 

fact, I can find no example of logic programming ever being used on a real 

architecture project.

The following case study differs from prior logic programming research 

in three important ways. Firstly, it investigates logic programming in 

the context of a real design problem from the Sagrada Família rather 

than discussing logic programming theoretically applied to an idealised 

problem. Secondly, it focuses on deducing the hierarchy of relationships 

for a parametric model instead of directly generating geometry, or laying 

out rooms, or drawing Palladian villas. Finally, this research does not aspire 

to develop the computing tool for the architect of the future; instead it 

aims to observe how programming paradigms influence the flexibility of 

parametric models.
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My logic programming interpreter uses a three-stage process to derive 

a parametric model automatically from a set of axioms. These stages are 

illustrated in figure 36. The first stage is to read the text file containing the 

axioms. In the second stage, the axioms are parsed into an undirected graph 

(using rules I will explain shortly). At the final stage, the interpreter uses 

forward-chaining to deduce the directness of the graph, which produces 

the DAG of a parametric model satisfying the initial axioms.

5.5	 Logic Programming 

Parametric Relations

As part of my research I developed a logic programming language for 

generating parametric models. A designer using the language can specify 

connections between operations, which are then used by an interpreter to 

derive the flow of data without the designer needing to specify a hierarchy 

(like they would in a dataflow language). I elected to develop my own 

logic programming interpreter in C# rather than using an existing logic 

programming implementation. This allowed me to link the interpreter 

directly to a parametric engine I had already built on-top of Rhino 4’s 

geometric API (an engine reused for the case study in chapter 7).

Type(a,point)
Type(b,point)
Type(c,line)
Connect(a,c)
Connect(b,c)
Construct(line,point,vector)
Construct(line,point,point)
Construct(point,num,num,num)

A
Point

A
Point

C
Line

C
Line

B
Point

B
Point

1. Axioms 2. Undirected 
Graph

3. Directed 
GraphParse Forward-

chaining

Figure 36: The major 
stages involving in 
deducing a parametric 
model to satisfy a set 
of textual axioms. The 
dashed lines show how 
the axioms generate 
particular parts of 
the graphs in the 
various stages.
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There are three types of axioms permitted in the language:

Axiom Type 1: Geometric

A geometric axiom defines a geometric entity’s unique name and geometry 

type. For example, a line with the name of C, is defined by the axiom: 

type(C,line).

Axiom Type 2: Connection

A connection axiom establishes a connection between two geometric 

entities. For example, to connect line C to point B, the axiom would be: 

connect(B,C). Connection axioms do not define the direction of the 

connection, they only state that two geometric entities are related.

Axiom Type 3: Construction

A construction axiom describes a combination of parents that define a 

particular geometry type. For example, a line can be defined by two parent 

points, which is expressed with the axiom: construct(line,point,point). 

Any particular geometry type can have multiple construction axioms. 

For example, a line may also be defined by a point and a vector: 

construct(line,point,vector). Using forward-chaining, the 

interpreter selects the most appropriate construction axiom for a given 

situation. In figure 36, the forward-chaining algorithm has inferred that 

node C, a type of line, must be defined by two parent points. To satisfy 

this relationship, the interpreter organises the undirected graph into a 

hierarchy so that line C becomes the child of the two points (A & B). The 

following page explains the three rules used to infer the most appropriate 

construction axioms.
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Inference 1: Asymmetric constructors

The construction axioms list the type of geometry that can act as the 

parent for any given type of node. If two nodes are connected, and the 

first node has a construction axiom allowing the second node to be its 

parent, and the second node does not have any construction axioms that 

allow the first node to be its parent, then the first node must necessarily 

be the parent of the second node.

A
Point

C
Line

Construct(line,point,vector)
Construct(line,point,point)

Construct(point,num,num,num)
Construct(point,vector)

A
Vector

B
Point

C
Vector

Construct(point,num,num,num)
Construct(point,vector)

A
Vector

B
Point

C
Vector

Construct(point,vector)

Figure 37: A must be 
the parent of C, since 
none of the construction 
axioms for A require a 
line as a parent, whereas 
both the construction 
axioms of C require a 
point as a parent.
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Figure 38: The first 
construction axiom 
requires B to have 
three parents that are 
numbers. Since B is 
not connected to any 
numbers, it will never be 
able to fulfil this axiom 
and therefore the axiom 
can be eliminated. The 
second axiom is still 
possible, which means 
one of the vectors much 
be a parent to B.
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Figure 39: If A is 
B’s parent, then B’s 
construction axiom is 
fulfilled and it cannot 
have anymore parents. 
Accordingly, all the 
remaining undirected 
connections must flow 
away from B, and thus C 
is a child of B.

Inference 2: Constructor elimination

If a node has multiple construction axioms, some axioms can be eliminated 

if the node is not connected to the right combination of node types to fulfil 

a particular construction axiom. Eliminating constructor axioms makes it 

more likely to find asymmetric constructors.

Inference 3: Constructor definition

If a node has all the required parents to fulfil a construction axiom, then 

it does not need any more parents and all the remaining nodes connected 

through undirected connections must be children. Once this rule becomes 

relevant the directedness normally cascades through the graph as large 

numbers of connections become directed.



109

Ideally these three rules are enough to deduce the entire flow of the graph. 

On occasion the axioms will define an over-constrained graph, producing 

a situation where two nodes are connected but neither is a permissible 

parent of the other. In this case the interpreter first looks to see if the 

addition of numerical nodes will allow progress past this impasse. If not, 

the user is asked to resolve the axiom conflicts.

A designer using this logic programming system only needs to define 

connections between geometric entities, which leaves the interpreter 

to infer the direction of the connections. Figure 40 shows how axioms 

transform into a parametric model and how changes to the axioms 

automatically result in new dataflows. The example in figure 40 is identical 

to the earlier dataflow example in figure 35 except, unlike the dataflow 

example, the changes to the parametric model’s hierarchy are managed 

invisibly by the interpreter; the designer adds a few axioms and the new 

dataflow is automatically derived by the interpreter. The following section 

describes how these changes come to impact real architecture projects.

Type(a,point)
Type(b,point)
Type(c,line)
Connect(a,c)
Connect(b,c)
Construct(line,point,vector)
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Figure 40: An example 
of how changes to a 
set of axioms translate 
into changes within 
a parametric model. 
Top: The axioms and 
resulting parametric 
model from figure 36. 
Bottom: The inclusion 
of new axioms creates 
a slightly different 
undirected graph which 
the forward-chaining 
interpreter transforms 
into a radically different 
parametric model when 
compared to the one 
above (note that these 
changes are the same as 
with the dataflow model 
in figure 35).
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5.6	 Application to the 

Sagrada Família

Every vertex was slightly awry on the Sagrada Família’s fronton model. 

This  introduced curves to faces that should have been planar, pulled 

geometry out of line with important axes, and unsettled the proportions of 

the model (fig. 29). In March 2010, I developed a set of parametric models 

to realign the vertices of the distorted model. I built these models from 

Melbourne, Australia and was guided by discussions with Mark Burry and 

the Sagrada Família design office based in Barcelona, Spain.

To understand the impact of a parametric model’s programming paradigm, 

I straightened the frontons twice: once with a dataflow language, and 

once with a logic programming language. In order to do so, the geometry 

of the frontons was first converted into a parametric model in each of 

the respective programming paradigms. Once converted, parametric 

relationships were introduced to realign the model. These relations ensured 

that polygons were regular and that certain groups of vertices were planar, 

symmetrical, proportioned, and on an axis. The parametric model was 

then flexed so the new geometry matched the original model as closely as 

possible.7 The specific process of using dataflow programming and logic 

programming was as follows.

Applying Dataflow

The dataflow parametric model contained approximately a thousand 

geometric operations that straightened the one hundred and eleven 

vertices in the original fronton model. This parametric model was as large 

as the largest models analysed in chapter 4.3.8 Due to the anticipated 

size of the model, I elected to generate the fronton parametric model in 

Digital Project. The geometry was imported into Digital Project where I 

introduced parametric relationships to fix the original model’s distortions. 

7	 Closeness in this case was measured as both the median distance model vertices moved 
and the maximum distance model vertices moved.

8	 Figure 27 & 28 show how the fronton model is only a small component of the Sagrada 
Família overall, and a fairly geometrically simple component at that. To have such a 
large and detailed architecture project modelled parametrically is quite unusual. And 
with parametric models being employed on the Sagrada Família for almost two decades, 
I would venture to say that in aggregate the models are likely to be the most extensive 
and most complex parametric models ever used in an architecture project.
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Hopper Fronton pitch

Major Fronton

Minor Fronton Fronton Angle

Figure 41: The key parts 
of the Sagrada Família’s 
frontons.

Like much of Gaudí’s 
architecture, the 
frontons consist of 
ruled surfaces:

 Planar surfaces.

 Hyperbolic 
paraboloids.

 Conic sections.
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The parameters of the Digital Project model were managed in an Excel 

spreadsheet. By changing values in the spreadsheet I could move the new 

refined frontons as close as possible to the original geometry. The best 

set of parameters I could find reduced the median difference between the 

two models to 13mm. I then further refined these values using a genetic 

algorithm, which narrowed the median distance to 6mm. Since it was only 

the model’s parameters being changed, all the parametric relationships in 

the new geometry were maintained during this process.

Applying Logic Programming

The frontons were also straightened with the logic programming technique 

I described earlier. The logic programming environment took a series of 

axioms describing the frontons’ geometric relationships and then derived 

a parametric model to satisfy these relationships. In total, approximately 

six hundred axioms were required to generate the parametric model of 

the frontons. Almost five hundred axioms were automatically generated. 

These included most of the geometric axioms, which could be found by 

iterating through all the points, lines, and planes in the original model 

to produce axioms like: type(p_127,point) and type(plane_3,plane). 

Most of the connection axioms were found using a similar method whereby 

vertices from lines or planes that coincided with a point were said to be 

connected, which produced axioms like: connect(p_127,plane_3). 

The remaining one hundred axioms in the logic programming model were 

generated manually. These included the construction axioms, as well as 

new geometric axioms to define important planes, axes, polygons, and 

vectors. From these axioms the logic programming interpreter generated 

a parametric model. The model’s parameters were refined using a genetic 

algorithm, which reduced the median distance between the new and old 

model to 6mm – a comparable result to the dataflow model.9

9	 The genetic algorithm initially proved ineffective on the parametric models produced 
by logic programming since the logic programming interpreter initialised all values to 
zero, which caused the optimisation to begin thousands of millimetres from its target. 
In pulling the geometry towards the target, the genetic algorithm had a tendency to get 
stuck on local optima. To overcome this problem, the values of the model were initialised 
using a hill climbing algorithm. This got the geometry into approximately the right place 
before the final refinement with the genetic algorithm.

Hopper Fronton pitch

Major Fronton

Minor Fronton Fronton Angle
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5.7	 Analysis of 

Programming Paradigms

Method

Straightening the Sagrada Família’s frontons with a logic programming 

paradigm and a dataflow paradigm presents the opportunity to observe 

how the programming paradigms affect the respective parametric models. 

The following observations draw upon the research instruments discussed 

in chapter 4. Of particular interest is how the programming paradigm 

impacts the model’s construction time as well as the relative modification 

time and extendability. In addition, the latency between changes and the 

verification of model correctness are important differentiators between 

the two paradigms.

Construction Time

Constructing the first version of the dataflow parametric model in Digital 

Project and Excel took approximately twenty-three hours. This time does 

not include the time taken to convert the original geometry into Digital 

Project or the subsequent time spent modifying the first version of the 

parametric model. Much of the twenty-three hours was consumed selecting 

the appropriate parametric relationships, working out how to apply the 

relationships in a hierarchy of parent-child connections, and verifying the 

relationships generated the expected geometry. Working out the correct 

parent-child connections was deceptively difficult since connections often 

had flow-on implications for the surrounding geometry. These challenges 

were largely avoided with logic programming by generating the majority 

of the axioms automatically from the existing geometry and by using the 

logic programming interpreter to infer the hierarchy of relationships these 

connections imply. Accordingly, constructing the first version of the logic 

programming parametric model took approximately five hours.

In this case using a logic programming paradigm was four to five times 

faster than using a dataflow paradigm. The time difference is largely 

attributable to the automatic extraction of axioms and subsequent 
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inference of the model’s hierarchy with the logic programming interpreter. 

This was only possible because there was a pre-existing geometric model 

of the frontons, which is an unusual circumstance for most architecture 

projects. The difference in construction time cannot therefore be expected 

on other architecture projects, particularly ones without a pre-existing 

geometric model. Nevertheless, the variance in construction time 

demonstrates that programming paradigms can significantly affect 

projects, although these affects are dependent upon the circumstances 

of the project. An appropriate circumstance for logic programming seems 

to be when a pre-existing explicit geometric model needs to be converted 

into a parametric model.

Modification Time and Extendability

Modification time is a quantitative measure of how long a change takes 

to make while extendability is a qualitative assessment of the ease with 

which a program adapts to change (Meyer 1997, 6-7). In straightening 

the frontons there were two primary changes asked for, both of which 

reinforce the precision required in the project:

1.	 Minor Fronton Angle: On the original distorted model the minor 

fronton axis angle was 43.875 degrees (fig. 41). I initially ‘corrected’ 

this to 45.000 degrees, which caused the model to move significantly. 

The design team asked the angle be changed back to 43.875 degrees 

before subsequently deciding that 43.904 degrees was most in keeping 

with the geometry of the Sagrada Família’s central tower. When I built 

the dataflow model I was uncertain of the fronton angle so I included 

a parameter to control it. This parameter permitted these changes to 

be made almost instantaneously. On the logic programming model 

the changes could be accommodated by adding a new axiom to define 

the vector of the plane linked to the centre of the minor fronton. 

This process took slightly longer than in the dataflow language, but 

still less than fifteen minutes.

2.	 Minor Fronton Pitch: In one of the final iterations it was discovered 

that the pitch of the major and minor frontons was slightly different. I 

had come across the anomaly previously but assumed it was a rounding 

error since the deviation was less than 0.02 degrees. Over a ten metre 
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span this slight abnormality resulted in a 2mm error, which was 

outside the tolerance of the seven-axis robot milling the frontons. The 

solution was to redefine the pitch of the minor fronton. In the dataflow 

model this change had few flow-on consequences and therefore 

took less than thirty minutes to implement. The logic programming 

language unfortunately lacked the vocabulary to express the pitch 

change. I spent two hours adding a new construction axiom to the 

logic programming vocabulary that permitted a vector to be mirrored 

through a plane. Once this axiom was added, it took approximately 

fifteen minutes to change the pitch of the minor fronton by mirroring 

the pitch of the major fronton.

On this project both programming paradigms were extendable enough to 

accommodate both of the primary changes. The changes were somewhat 

unusual in that they did not affect the topology of the project (an act 

many authors I discussed in chapter 2.3 found disruptive). The changes 

instead focused on the precision of the model and the way the geometry 

was related. In making these changes the dataflow language offered slightly 

faster modification times: in the first case because I anticipated the change 

by including a parameter for it, and in the second case because logic 

programming was slowed by limitations in its vocabulary. This success does 

not confirm the agility of dataflow programming as much as it confirms the 

importance of the designer’s intuition in setting up a model’s hierarchy, 

and the importance of what Meyer (1997, 12-13) calls the modelling 

environment’s functionality (having the right vocabulary to express an 

idea or change).

In retrospect the changes to the frontons seem relatively minor for the 

effort expended on them. However, the magnitude of these changes comes 

from the model extendability rather than the brief. Had I been using a 

non-parametric model, or had I created an inflexible parametric model, 

both of these changes would have involved deleting over half of the model’s 

geometry and starting again. The minor changes would have been serious 

problems. Thus, while the attention to detail on the Sagrada Família 

may seem pedantic, the level of design consideration is only afforded by 

maintaining flexible representations.
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Latency

Latency measures the delay in seeing the geometry change after changing 

a model’s parameters. With the dataflow model, modifications to the Excel 

values would propagate out into the geometry produced by Digital Project 

within a few seconds, which was not quite real-time but near enough for 

this project. Conversely, the logic programming model had a pronounced 

latency between editing the axioms and seeing the resulting geometry. 

Minutes would elapse while the interpreter worked to derive the parametric 

model after axiom changes.10 Since the derived parametric model did not 

always have parameters in intuitive places, often the only way to change 

numerical values (like the angle of the minor fronton) was to change the 

axioms and then wait as the interpreter derived a new parametric model. 

This latency made changing the logic programming model a more involved 

and less intuitive process than with the dataflow model.

Correctness

Correctness describes whether a program does what is expected (Meyer 

1997, 4-5). For both programming paradigms it was difficult to verify 

the models were doing what was expected. In the dataflow language the 

quantity of relationships obfuscated the flow of data, which made it hard 

to work out what the model should have been doing. On three occasions 

this led to the wrong geometric operation being applied. These errors were 

not apparent by looking at the dataflow model or by visually inspecting the 

geometry, and they were only caught by the project architects manually 

measuring the model. Logic programming was equally difficult to verify 

because it was not always apparent how the geometry derived from the 

axioms. Often I would end up adding axioms one-by-one to understand 

their impact on the final geometry. In the end, both programming 

paradigms produced parametric models that did what was expected but, 

in a project where the geometric changes were subtle and the relationships 

numerous, often the only way to verify correctness was to examine what 

the model did rather than understand how the model did it.

10	 The latency increases with model size although it may be influenced by other factors. 
These include the interpreter’s efficiency and the way the axioms define the problem. The 
results discussed should not be interpreted as evidence that logic programming suffers 
from general latency issues, rather the results should be read with the caveat that they 
are particular to the project’s specific logic programming implementation and to the 
specific circumstances of this project.
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5.8	 Conclusion

Van Roy and Haridi (2004, xx) write that when it comes to programming 

paradigms “more is not better (or worse), just different.” Yet for architects 

applying parametric models to projects like the Sagrada Família, they have 

always had less than more when it comes to programming paradigms. 

Architects building parametric models are presently confined to either 

declarative dataflow paradigms in visual programming languages, or 

procedural imperative paradigms in textual programming languages. The 

research I have presented demonstrates that programming paradigms 

influence –  at the very least – the parametric model’s construction 

time, modification time, latency, and extendability. Since programming 

paradigms cannot normally be switched without rebuilding a model, 

selecting an appropriate programming paradigm for the context of a project 

is a critical initial decision. This is a decision that has an evident affect 

on many aspects of a parametric model’s flexibility yet, unfortunately, it 

is a decision largely unavailable to architects; they often cannot choose 

more, less, or different – just: dataflow or procedural. Van Roy and Haridi’s 

discussions of programming languages are interesting, not just because 

Van Roy sees the Sagrada Família as a metaphorical signifier of them, 

but because these discussions of programming paradigms signify how 

parametric models, like those used on the Sagrada Família, can be tuned 

to privilege different types of design changes.

Perhaps the most intriguing part of this case study is the disjunction 

between the theoretical advantages of logic programming and the realised 

advantages of logic programming. I began this chapter by talking about 

the challenges of modifying the hierarchy of relationships in a dataflow 

language and I postulated that the time associated with these modifications 

could theoretically be reduced if the computer – rather than the designer 

– organised the parametric model’s hierarchy. In a series of diagrams I 

illustrated how a logic programming language would allow a designer to 

specify directionless connections that are automatically organised by a logic 

programming interpreter, thereby reducing the theoretical modification 

time. Yet in reality the opposite happened: when used to generate the 

parametric model of the Sagrada Família’s frontons, logic programming 

actually lengthened the modification time. This is in large part because 

the interpreter often took a long time to generate a new instance of the 

model – a detail easily overlooked when discussing logic programming 



Figure 42: The frontons 
under construction at 
The Sagrada Família in 
September 2012.
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theoretically, but one that can possess significant importance when a 

designer has to wait five minutes for the logic programming interpreter 

to work through the six hundred axioms in order to realise a single 

modification to the frontons. While these results are highly dependent 

upon circumstance – and although the Sagrada Família’s size, detail, and 

precision makes it a rare circumstance – these results do underscore the 

value of practice-based understandings of parametric modelling. This 

disjunction between theory and practice when talking about programming 

paradigms is perhaps the reason why logic programming failed to live up 

to the theoretical expectations that had been expressed by authors who 

had never actually used logic programming in practice – examples include, 

Mitchell (1990) in The Logic of Architecture and Swinson (1982) in Logic 

Programming: A computing tool for the architect of the future.

While logic programming did not live up to Mitchell or Swinson’s 

hopes, and while logic programming induced a far greater latency than I 

expected in theory, this is not to say logic programming is without merit. 

Logic programming in architecture, as in software engineering, appears to 

excel at reasoning about relationships. In this capacity, it seems particularly 

suited to extracting relationships from pre-existing geometry in order to 

derive a parametric model; the reverse of the typical parametric modelling 

process. In the fronton case study, with a pre-existing geometric model of 

the frontons, this led to significantly reduced construction times when 

compared to the dataflow model. However, both methods produced large 

and intricate models that were hard to verify as being correct – an issue of 

understandability addressed in the following chapter.
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6	 Case B: 
Structured 
Programming

Project: Designing Dermoid.

Location: Royal Danish Academy of Fine Arts, Copenhagen, Denmark.

Project participants from SIAL: Mark Burry, Jane Burry, Daniel Davis, 

Alexander Peña de Leon.

Project participants from CITA: Mette Thomsen, Martin Tamke, Phil 

Ayres, Anders Deleuran, Aron Fidjeland, Stig Nielsen, Morten Winter, 

Tore Banke, Jacob Riiber; Workshop 3, Material Behaviour, Department 

2, EK2, fourth year (November 2010); Workshop 4, Paths to Production, 

Department 2, third year, (January 2011).

Related publications:

Davis, Daniel, Jane Burry, and Mark Burry. 2011. “Understanding 

Visual Scripts: Improving collaboration through modular 

programming.” International Journal of Architectural 

Computing 9 (4): 361-376.

Davis, Daniel, Jane Burry, and Mark Burry. 2011. “Untangling 

Parametric Schemata: Enhancing Collaboration through 

Modular Programming.” In Designing Together: Proceedings 

of the 14th International Conference on Computer Aided 

Architectural Design Futures, edited by Pierre Leclercq, Ann 

Heylighen, and Geneviève Martin, 55-68. Liège: Les Éditions 

de l’Université de Liège.
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6.1	 Introduction

In June 2010 I found myself biking to the edge of Copenhagen, out past 

the Royal Danish Academy of Fine Art, and into a secluded concrete studio. 

The  studio was filled with full-scale wooden prototypes, with laptops 

connected to various international power adaptors, and with researchers 

from CITA1 and SIAL2. The researchers were all debating a deceptively simple 

problem: how can we fashion a doubly curved pavilion from a wooden 

reciprocal frame. It is a question that would occupy a dozen researchers, 

including myself, for over a year; a question that would eventually led to 

the construction of the first Dermoid pavilion in March 2011.

1	 Center for Information Technology and Architecture at the Royal Danish Academy of 
Fine Arts, Copenhagen

2	 Spatial Information Architecture Laboratory at RMIT University, Melbourne

Figure 43: Digital 
and physical models 
intermixed at the 
June 2010 Dermoid 
Workshop. From 
left to right: Martin 
Tamke, jacob Riiber, 
Morten Winter, Jane 
Burry (hidden), Mark 
Burry, Alexander Peña 
de Leon, Phil Ayres, 
Mette Thomsen.
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Figure 44: Detail of 
Dermoid installed at the 
1:1 Research By Design 
exhibition, March 2011, 
Royal Danish Academy 
of Fine Art, Copenhagen.



Figure 45: Dermoid 
installed at the 1:1 
Research By Design 
exhibition, March 2011, 
Royal Danish Academy 
of Fine Art, Copenhagen.
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There are numerous reasons why Dermoid was so difficult. One source of 

difficulty was the unknowns in the brief: we did not know the shape of 

the pavilion’s doubly curved surface, or even where the pavilion would be 

built; and at the time no one could calculate the structural performance 

of a reciprocal frame, especially one constructed from a heterogeneous 

material like wood. There were also many known difficulties in the brief: 

uniformly patterning a doubly curved surface is notoriously hard, and 

the circular relationships of a reciprocal frame do not lend themselves to 

parametric modelling. Further adding to the difficulty, the project involved 

a diverse team situated at opposite ends of the earth. In short, it was a 

project destined to challenge even the most skilled designers, the ideal 

project to observe the inflexibility of parametric models.

While Dermoid embodies many noteworthy innovations, in this case study 

I want to discuss specifically the development of Dermoid’s parametric 

models. The models have many authors since the researchers working on 

Dermoid were all experienced in parametric modelling, many of them 

world experts. The range of contributors meant that there was rarely a 

single “keeper of the geometry” – a name Yanni Loukissas (2009) gives to 

the person on a project who inevitably becomes solely responsible for the 

upkeep of the model. I assumed this role briefly as I prepared Dermoid’s 

parametric models for a workshop held in November 2010 at the Royal 

Danish Academy of Fine Arts. During this period I experimented with 

changing the structure of the models based on organisational techniques 

used by software engineers (identified in chapter 3.2). In this chapter I 

consider the impact of these changes using a combination of thinking-

aloud interviews and observations of subsequent model development. I will 

begin by discussing the historic motivation that led software engineers to 

structure their code, and benefits they observed from doing so.
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6.2	 Structured Programming

In March 1968, Edsger Dijkstra (1968) wrote a letter to the Association 

for Computing Machinery entitled Go To Statement Considered Harmful. At 

the time, the GOTO statement was the primary mechanism of controlling 

a computer program’s sequence of execution (the GOTO statement allows 

a program to skip ahead or jump backwards in a chain of programming 

commands). Dijkstra (1968, 148) argued that the intertwined jumps 

programmers were producing with GOTO statements were “too much an 

invitation to make a mess of one’s program.” Building on the work of Böhm 

and Jacopini (1966), Dijkstra proposed reducing the mess with simple 

structural commands such as if-then-else, and while-repeat-until. Although 

these structures now underlie all modern programming languages, they 

were not an obvious development in 1968. Many worried that structure 

would interrupt the “art” of programming (Summit 1996, 284), and 

that code would be even more difficult to understand when obscured by 

structure. Dijkstra (1968, 148) agreed and cautioned, “the resulting flow 

diagram cannot be expected to be more transparent than the original one.” 

Nevertheless, when scientists assembled at NATO a few months later in 

1968 to discuss the impending software crisis – with Dijkstra in attendance 

– many of their conversations made reference to code structure (Naur and 

Randell 1968).3

While there was no single cure to the software crisis, structure is now 

recognised as an important remedy for taming what Bertrand Meyer 

(1997, 678) calls the “unmistakable ‘spaghetti bowl’ look” of tangled 

GOTO statements that undoubtedly contributed to parts of the crisis. 

There are many types of structure but Böhm and Jacopini’s (1966) original 

proof (referred to by Dijkstra) uses only three, which they represent by 

the symbols ∏, Ω, and ∆ (fig. 46). Böhm and Jacopini (1966) showed how 

these three structures could be combined, without the GOTO statement, 

to create Turing complete programs. The implication of their proof is 

3	 At the meeting unstructured code was never singled out as one of the a causes of the 
software crisis. In fact, none of the attendees in the meeting minutes (Naur and Randell 
1968) make reference to unstructured programming or the GOTO statement. They do 
however often talk about code structure and code modules. Dijkstra also presented a 
paper entitled Complexity Controlled by Hierarchical Ordering of Function and Variability 
where he describes grouping code into layers that are restricted so they can only 
communicate with layers above them. While there are structural principles to this idea, 
it is a different type of structure to the one Böhm and Jacopini (1966) discussed and that 
Dijkstra (1968) referred to in Go To Statement Considered Harmful. In essence, structure 
was an idea that was gaining traction around the time of the NATO conference, but one 
that was still in the early stages of taking shape.
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that any unstructured program employing the GOTO statement can be 

rewritten without the GOTO statement by decomposing the program into 

a structure of subprograms that are linked using ∏, Ω, and ∆. Doing so 

eliminates the danger of stray GOTO statements jumping into unexpected 

locations. However, it took a lot more than a letter from Dijkstra for this 

proof to filter down into practice.4

Modules

The subprograms employed by Böhm and Jacopini have many synonyms 

in contemporary programming: methods, functions, procedures, and 

modules. Each term signifies the same general idea with a slightly 

different overtone. I have chosen to use the word module because of the 

connotations with standardisation, reuse, self-containment, and assembly 

(themes I will explore further in this chapter). A module is defined by Wong 

and Sharp (1992, 43) as “a sequence of program instructions bounded by 

an entry and exit point” that perform “one problem-related task” (these 

principles are applied to a module in Grasshopper in figure 47). If employed 

4	 While Böhm and Jacopini (1966) had shown that it was theoretically possible to 
write programs without the GOTO statement, this was not possible in practice until 
programming languages could accommodate Böhm and Jacopini’s three structures: 
sequence, iteration, and selection. Even after the development of these languages, 
programmers who were comfortable using the GOTO statement still used it. And 
nineteen years after Dijkstra’s (1968) original ACM letter – Go To Statement Considered 
Harmful – people were still writing rebuttals in the letters to the ACM like Frank Rubin’s 
(1987) “GOTO Considered Harmful” Considered Harmful.

∆

Ω

∏

Figure 46: The three 
structures that Böhm 
and Jacopini (1966) 
proved could be 
combined to create a 
Turing machine.

Sequence: Executing a subprogram 
in order.

Iteration: Executing a subprogram 
until a condition is reached.

Selection: Executing a subprogram 
based on a condition.
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successfully, modules have five principle benefits according to Bertrand 

Meyer (1997, 40-46):

1.	 Decomposition: A complicated problem can be decomposed into 

a series of simpler sub-problems each contained within a module. 

Decomposing problems like this may make them easier to approach 

and may make it easier for teams to work together since each team 

member can work on a separate sub-problem independently.

2.	 Composition: If modules are adequately autonomous they can be 

recombined to form new programs (a composition). This enables the 

knowledge within each module (of how to address a sub-problem) to 

be shared and reused beyond its original context.

3.	 Understandability: If a module is fully self-contained, a programmer 

should be able to understand it without needing to decipher the overall 

program. Conversely, a programmer should be able to understand the 

overall program without seeing the implementation details of each 

individual module. Dijkstra (1968, 148) worried this would lead 

to less transparency but most have since argued that abstraction 

helps understandability. For instance, Thomas McCabe (1976, 317) 

has posited that modularisation improves understandability since 

it reduces the cyclomatic complexity, making it “one way in which 

program complexity can be controlled.” Meyer (1997, 54) points out 

that modularisation aids a programmer’s comprehension of the code 

through the names given to inputs, outputs, and the module itself.

4.	 Continuity: A program has continuity when changes can be made 

without triggering cascades of other changes. In a program without 

continuity, changing one module will affect all the dependent modules, 

A

B C

E
D

Figure 47: A typical module in 
Grasshopper. The grey boxes 
are operations (themselves 
small modules) that have 
been linked together to form 
a larger module. More recent 
versions of Grasshopper have 
native support for modules 
(which are called clusters in 
Grasshopper) however at 
the time of my research this 
version of Grasshopper had not 
been released.

A: The name of the module.

B: The inputs – the only place 
data enters the module.

C: The outputs – the only place 
data leaves the module.

D: The operations of the module 
are encapsulated so that they 
can only be invoked by passing 
data through the module’s 
inputs.

E: A description of what the 
module does – a module does 
one problem-related task.
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setting off a chain-reaction as all the dependent modules are changed 

to accommodate the original change and so on. Continuity has much to 

do with how a program’s structure is decomposed. David Parnas (1972, 

1058) suggests that projects should be broken around “difficult design 

decisions or design decisions which are likely to change” so that each 

anticipated change is contained within a module in such a way that it 

does not impact the other modules.

5.	 Protection: Each module can be individually tested and debugged to 

ensure it works correctly. But if something does go wrong within a 

module, the module can contain the error and thwart its propagation 

throughout the program (protecting the rest of the modules from 

the error).

The benefits of modularisation are so pervasive that some modern 

programming languages, like C# and Java, make it impossible to write code 

not contained within some sort of module. Java even stopped supporting 

the GOTO statement, and some of the more recently invented languages 

– like Python and Ruby – have never supported the GOTO statement.5 In 

its place are screeds of structural constructs, from switch-case, to try-catch, 

to polymorphic objects. These structures, like Böhm and Jacopini’s original 

three, offer programmers various ways to decompose and recompose 

programs from smaller, self-contained chunks. Debates continue about how 

best to wield structure in order to increase understandability and reduce 

complexity, whilst improving continuity and protection. These debates fill 

entire sections of libraries and occupy the Software Design [2.2] section 

of the Software Engineering Body of Knowledge Version 1.0 (Hilburn et al. 

1999, 20). Yet despite the pervasive benefits of modularisation, architects 

creating parametric models in visual programming languages still tend to 

create unstructured models, as I will show in the following section.

5	 Neither Python nor Ruby support the GOTO statement by default but it can be turned 
on in Ruby 1.9 by compiling with the flag SUPPORT_JOKE and it can be added to Python 
by importing a library Richie Hindle created as an April fools joke in 2004 (http://
entrian.com/goto/). The jesting about adding GOTO to Ruby and Python speaks volumes 
of their relationship with the GOTO statement.
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6.3	 Architects Structuring 

Visual Programs

Unlike the programming languages in the 1960s, which were unstructured 

simply because the syntax for structure had not been invented, all the 

major visual programming languages used by architects have some basic 

structural constructs. In particular, they all support modularisation. In the 

lexicon of the various software, modules have come to be known as features 

in Bentley’s GenerativeComponents, digital assets in Sidefx’s Houdini, 

and clusters in McNeel’s Grasshopper. But even though these modular 

constructs exist, architects tend not to use them. In chapter 4.3’s sample of 

2002 Grasshopper models, 97.5% of the models did not employ modules.6 

Moreover, 48% of models had no modules, no groups, no explanation of 

what they did, and no naming of parameters: by even the most generous 

of definitions these models were completely unstructured.7 In addition to 

being unstructured, the models generally have a high cyclomatic complexity 

(see chap. 4.3) and possess what Meyer (1997, 678) calls the “unmistakable 

‘spaghetti bowl’ look” of interwoven relationships and long chain 

dependencies (fig. 48). In many ways these tangled visual programs parallel 

6	 1553 of the sampled models were created in a version of Grasshopper that supported 
clusters (either below version 0.6.12 or above version 0.8.0) and of these models only 
39 contained at least one cluster.

7	 In the sample of 2002 Grasshopper models, 36% of the models contained at least one 
piece of text that explained what part of the model did; 30% of the models used one 
or more groups; 19% of the models had at least one node that named a branch of data; 
2.5% of the models had clusters; and 48% had none of the above. This does not mean 
the other 52% are entirely structured; even though a model is structured by groups, and 
explanations, and names, their presence does not guarantee that the model is structured 
(for example, the unstructured models in figure 48 are part of the 52% since they both 
use groups). The percentage of unstructured models therefore falls somewhere between 
48% and 97.5% depending on the definition of structure, but I would assume most 
definitions would conclude that at least 90% of the sampled models are unstructured.

Figure 48: Examples 
of spaghetti forming 
in two unstructured 
Grasshopper models. 
Neither model gives any 
hint (through naming or 
otherwise) as to what the 
crisscrossed connections 
do and it is impossible 
deduce simply from 
inspection.
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the knots of GOTO statements that characterised the programs of the 

1960s, with seemingly similar consequences in terms of understandability. 

It remains unknown precisely why architects are creating models that 

are seemingly so messy, complicated, and unstructured. Two possible 

explanations are that the Grasshopper implementation of modules is 

somehow flawed, or that architects lack the knowledge required to utilise 

the modules properly.8

8	 A third explanation has been put forward by others I have spoken to: architects are 
under too much pressure to bother structuring their models. As Woodbury (2010, 9) 
puts it, architects quickly “find, skim, test and modify code for the task at hand” and 
then move onto the next one leaving “abstraction, generality and reuse mostly for ‘real 
programmers’.” I find this explanation unconvincing because it ignores the fact that 
many software engineers are also working under a lot of pressure. If software engineers 
and architects both experience pressure, then pressure alone does not explain why one 
group so studiously structures their programs while the other group almost never does.

Figure 49: A cluster in 
Grasshopper (a model 
used in chapter 7 for the 
FabPod). Top: The full 
parametric model with 
the cluster in its most 
abstract form. Bottom: 
Opening the cluster to 
reveal the operations it 
encapsulates, however, 
opening the cluster also 
hides the rest of the 
model, which impedes 
the model’s visibility and 
juxtaposability.
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Implementation of Clusters

The low use of modules may be in part an artefact of Grasshopper’s cluster 

implementation. Clusters were a feature present in early versions of 

Grasshopper that was later removed in version 0.6.12 and subsequently 

reintroduced in version 0.8.0. The inconsistent presence and function of 

clusters undoubtedly makes some users untrusting of them.

Perhaps more significantly, however, the way clusters are currently 

implemented in Grasshopper may actually impede the understandability 

of the model.9 As Dijkstra (1968, 148) warned, structure can make the 

resulting program less “transparent than the original one.” While the 

abstraction brought about by less transparency may be beneficial in a 

textual language, in a visual language structural abstractions can hinder 

access to code according to Green and Petre (1996, 164). Their widely 

cited research on the usability of visual programming languages indicates 

that the understandability of a program is dependent upon visibility (how 

readily parts of the code can be seen) and juxtaposability (the ability to 

see two portions of code side-by-side) (Green and Petre 1996, 162-164). 

Clusters in Grasshopper constrain visibility by limiting the view to one 

particular level of abstraction at a time (fig. 49). Juxtaposability is currently 

impossible in Grasshopper since two levels of abstraction cannot be seen 

at the same time, or side-by-side. Furthermore, cluster reusability is 

impeded since cluster changes do not propagate through related instances 

of reused clusters. Owing to these limitations, the clusters in Grasshopper 

are more suited to packaging finalised code rather than supporting the 

decomposition and composition of an evolving program (the way structure 

is typically used in textual programs). This may be one reason for low 

cluster use in Grasshopper.

9	 At the time of writing (late 2012) Grasshopper is still under development. This 
description of clusters in Grasshopper helps explain why clusters and structure were 
not in the models I sampled, but it may not apply to models created in future versions 
of Grasshopper since the cluster implementation is likely to change.
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Structure and Education

Another possible factor leading to low cluster use has to do with the 

education of architects. Designers are generally not taught about parametric 

modelling as much as they are taught to use parametric modelling 

software.10 Woodbury (2010, 8) observes that most manuals and tutorials 

teach students by “providing lists of commands or detailed, keystroke-

by-keystroke instructions to achieve a particular task.” For example, a 

student learning to use Grasshopper may start with the Grasshopper Primer 

(A. Payne and Issa, 2009). On page twenty-seven they learn how selecting 

seven items from the menu and linking them together produces a spiral 

through points, which is a lesson that is not substantively different to 

learning how selecting two items from the menu in the non-parametric 

software, Rhino, will also produce a spiral through points. This pedagogy 

continues throughout the Grasshopper Primer and in other Grasshopper 

introductions like Zubin Khabazi ’s (2010) Generative Algorithms using 

Grasshopper as well as in the teaching material for other parametric 

modelling software like Bentley Systems’ (2008) GenerativeComponents V8i 

Essentials and Side Effects Software’s (2012) Houdini User Guide. Students 

using these various guides are primarily taught the particular sequence 

of interface actions to make a tool that produces a particular geometric 

outcome, almost always without being taught the accompanying abstract 

concepts like program structure.

This parametric modelling pedagogy contrasts sharply with how 

programmers are taught. In chapter 3.2 I showed how the basic skill of 

programming (knowing the particular sequence of interface actions to 

produce a particular outcome) forms only a small part of the Software 

Engineering Body of Knowledge Version 1.0 (Hilburn et al. 1999). Programming 

is therefore only a small part of what entry level programmers are expected 

to know. Even resources designed to teach the basic skill of programming 

cannot help but discuss more abstract structural concepts – for instance, 

the fifth, sixth, and seventh chapters of Beginning Python (J. Payne 2010) 

respectively cover the following: creating subprograms and functions; 

10	 This teaching method has been advanced since at least 1989 when Alexander Asanowicz 
argued at eCAADe “we should teach how to use personal computer programs and not 
programming.”
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creating classes and objects; and structurally organising programs.11 

Structure is such an intrinsic part of programming that it is mandatory in 

some languages, like Java and C#, a concept reinforced in the practice of 

programming and fundamental to the education of programmers.

For architects, the most comprehensive analysis of structuring parametric 

models comes from Woodbury, Aish, and Kilian’s (2007) paper, Some 

Patterns for Parametric Modeling, which was later republished as a sizeable 

part of Woodbury’s (2011) Elements of Parametric Design. The paper riffs on 

the seminal software engineering book Design Patterns by Gamma, Helm, 

Johnson, and Vlissides12 (1995), although each has a slightly different 

emphasis: Design Patterns focuses on methods of structuring code to 

address problems with the code itself (such as reusability, understandability, 

and extendability), whereas Some Patterns for Parametric modeling presents 

patterns that solve problems specific to architecture (such as ordering 

points, projecting geometry, and selecting objects). This makes Some 

Patterns for Parametric Modeling more like a recipe book of useful modules 

than a Design Patterns-esque guide for structuring programs.

One pattern from Some Patterns for Parametric Modeling does address 

problems with the understandability of code itself. The Clear Names 

pattern advocates always naming objects with “clear, meaningful, short 

and memorable names” (Woodbury 2010, 190). This is a relatively 

easy pattern to follow in Grasshopper since the names of parameters 

can be quickly changed by clicking on them. Yet neither of the training 

manuals provided on the official Grasshopper website teach architects 

the clear names pattern. The only reference in Generative Algorithms Using 

Grasshopper comes from a caption that mentions “I renamed components 

to point A/B/C by the first option of their context menu to recognize them 

easier [sic] in canvas” (Khabazi 2010, 11). Similarly, the only reference 

in the Grasshopper Primer is half a sentence mentioning that designers 

can “change the name to something more descriptive” (A. Payne and Issa 

2009, 10), without explaining how or why they should. Not surprisingly, 

81% of the Grasshopper models I sampled contained no uniquely 

named parameters. This absence of basic modifications that improve the 

11	 While I have chosen Beginning Python to illustrate this point, the same is true of almost 
any book on programming.

12	 Design Patterns is in turn based upon the work of Christopher Alexander.
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understandability of models may be a symptom of how architects are 

taught to model. While programmers learn about structure in basic books 

like Beginning Python and in dedicated books like Design Patterns, even 

simple concepts like naming parameters cannot be found in the educational 

material given to architects. This may be one reason that more advanced 

structural techniques (like modules) are so infrequently used by architects.

To Understand Visual Programs Better

The benefits of structured programming are undebatable for contemporary 

software engineers; it is something all programmers do, something some 

languages mandate, something covered in even basic introductions to 

programming. Despite the strong evidence in software engineering that 

structure is beneficial, we know very little about how the structure of 

parametric models affects the practice of architecture. We do know that 

architects tend not to structure their models, with two possible factors being 

both the education of architects and the way modules are implemented in 

parametric software. In this case study I consider what happens if these 

two impediments are removed and an architect structures their model. 

In particular I examine whether overcoming such impediments would be a 

worthwhile pursuit for architects. I have spread these considerations over 

a series of three experiments related to structuring the parametric models 

of the Dermoid pavilion:

1.	 Evaluating the understandability of structured programs through 

thinking-aloud interviews [6.4].

2.	 Analysing Dermoid’s modular model structure and how this affected 

the project development [6.5].

3.	 Consideration of how parts of Dermoid can be recomposed and shared 

with the internet [6.6].



136

6.4	 Understandability of Visual 

Programs in Architecture

To discern whether structuring a parametric model impacts an architect’s 

comprehension of the model, I conducted an experiment whereby 

architecture students were shown a series of structured and unstructured 

visual programs. Using a thinking-aloud interview technique I established 

how legible the students found models with and without structure, thereby 

articulating what architects may or may not be missing when they create 

visual programs devoid of structure.

Method

Thinking-aloud interviews are a type of protocol analysis commonly used 

in computer usability studies as a means of understanding a user’s thought 

process as they carry out a task (Nielsen 1993, 195-200; Lewis and Rieman 

1993, 83-86). Clayton Lewis pioneered the technique while working at 

IBM, a technique he plainly describes as “you ask your users to perform 

a test task, but you also ask them to talk to you while they work on it” 

(Lewis and Rieman 1993, 83). Users are typically asked to discuss the 

“things they find confusing, and decisions they are making” (Lewis and 

Rieman 1993, 84). As participants answer these questions they hopefully 

give the researcher an insight into their experience of performing the 

tasks; insights that would otherwise be concealed if the researchers only 

examined the participants actions, or only asked the participants point-

blank, how easy was this task?

The participants were randomly selected from a class of twenty-five 

architecture students from the Royal Danish Academy of Fine Art who 

were attending a weeklong parametric modelling workshop. Four students 

were selected based on usability expert Jacob Neilson’s (1994, 249-56) 

recommendation to use between three and five participants in thinking-

aloud interviews. The selected students each had between one and seven 

years’ experience with computer-aided design, and all had one year’s 

experience using Grasshopper – making them competent users but by no 

means experts. Each participant was shown three Grasshopper models in 

a prescribed order (fig. 50). For every model presented, the participant was 



Model-A1 
Nodes:	 41 
Structured:	 Yes 
Function:	 Wraps two-dimensional pattern onto a surface 
Equivalent to:	 Model-C1 

Model-B 
Nodes:	 120 
Structured:	 Yes 
Function:	 Draws triangles on a hemisphere from an inscribed polyhedron 
Equivalent to:	 n/a

Model-C1 
Nodes:	 26 
Structured:	 No 
Function:	 Wraps two-dimensional pattern onto a surface 
Equivalent to:	 Model-A1

Figure 50: The Grasshopper models shown to the participants. To reduce the bias from 
one model being uncharacteristically understandable the participants were either shown 
the three models on this page or the three models on the facing page (selected at random). 
The first model the participants saw, model-A, was a structured versions of the last 
model the participants saw, model-C. These models were of an average size (see chap. 4.3) 
and did a task the participants were generally familiar with (applying two-dimensional 
patterns to three-dimensional surfaces). To mask the fact that model-A and model-C were 
equivalent, the participants were shown model-B in between, which was much larger 
and did a task the participants were unfamiliar with (to ensure the participants spent a 
long time studying the model and forgetting about the first model). As the experiment 
was conducted at a time when Grasshopper did not support clusters, the structure was 
generated through visually separating groups of code around defined entry and exit points, 
and through clearly naming parameters and groups. Fortuitously this avoids some of the 
aforementioned issues of visibility and juxtaposability present in Grasshopper’s current 
cluster implementation.



Model-A2 
Nodes:	 39 
Structured:	 Yes 
Function:	 Projects two-dimensional pattern onto a surface 
Equivalent to:	 Model-C2

Model-B 
Nodes:	 120 
Structured:	 Yes 
Function:	 Draws triangles on a hemisphere from an inscribed polyhedron 
Equivalent to:	 n/a

Model-C2 
Nodes:	 20 
Structured:	 No 
Function:	 Projects two-dimensional pattern onto a surface 
Equivalent to:	 Model-A2
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set the task of describing how the model’s inputs controlled the model’s 

geometry (which was hidden from view) while talking-aloud about their 

reasoning process. This essentially placed the participants in a role similar 

to a designer trying to understand a parametric model a colleague had 

shared with them. The participants were free to explore the model by 

dragging, zooming, and clicking on screen.

Unbeknownst to the participants, the only difference between the first 

model they saw (model-A) and the last model they saw (model-C) was the 

structure of the two models. This allowed me to observe a designer reading 

a structured model and then reading again the unstructured version of 

the same model. I was then able to compare how structure affected the 

understandably of the two models. To mask the similarities of the first and 

last model, the participants were shown a much larger model (model-B) in 

between seeing the structured model-A and its unstructured equivalent, 

model-C. None of the participants realised they had been shown two 

versions of the same model.

Thinking-Aloud Results

When shown the structured model (model-A) the participants could all 

describe the model’s overall function. They had no problems identifying 

the inputs or outputs, and half could describe what occurred in each 

of the model’s major stages. When asked about individual nodes, the 

participants generally understood what each node did but on occasion 

they would struggle to explain the precise outcome of a particular node 

within its context.

In contrast, when shown the same model in unstructured from (model‑C) 

all the participants resorted to guessing the model’s function (none guessed 

correctly). A typical comment from Participant-2 was: “It relaxes the lines? 

That’s a guess though, because I am not sure what any of these elements 

[nodes], I am not sure what any of them do.” In reality all the participants 

knew what each node did; when asked about individual nodes they would 

be able to say things like “it [the node] makes a line that joins two points.” 

What Participant-2 was struggling with – like all the participants – was 

assembling this understanding of individual nodes into an understanding 

of the aggregate behaviour of all the nodes. With no structure to guide 
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them, the participants often missed important clues like identifying the 

model’s inputs. No participant even realised they were being shown an 

unstructured version of the model they had seen earlier – all were surprised 

when told afterwards.

That participants should find structured models more understandable 

than unstructured models is hardly surprising given the aforementioned 

practices of software engineers. Yet it is surprising to see how relatively 

incomprehensible unstructured models – even small ones – are to 

designers unfamiliar with them. Even the much larger model-B was better 

understood by the participants than the small and unstructured model‑C. 

Despite model-B’s size and fairly obscure function, the participants could 

all methodically move through the nodes in each module describing 

them in far better detail than they could with model-C (although their 

understanding was not as comprehensive as with model-A). While size 

seems to invite complexity (see chap. 4.3), it seems that structure largely 

determines a model’s legibility.

The structured models had a number of key elements that seemed to guide 

the participant’s comprehension:

•	 Names: Participants regularly referred to node names and module 

names as they explained the model. This reinforces the Clear Names 

design pattern advocated by Woodbury (2010, 190). While naming 

nodes is relatively easy in Grasshopper, in the sample of 2002 

Grasshopper models, only 19% of the models had one or more nodes 

that named a branch of data.

•	 Positioning: Participants often overlooked critical input nodes and 

output nodes in model-C since the unstructured model had all the 

nodes intermixed. Yet in the structured models (where all the inputs 

were to the left and all the outputs to the right) the participants could 

readily identify the inputs and outputs.
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•	 Explanations: Some of the modules inside model-A and model-B 

contained short explanations of what they did. Participants seldom 

took the time to read these, which indicates a self-documenting 

model (one with clear names and a clear structure) is preferable to 

one explained through external documentation.

•	 Grouping: Two participants cited the grouping of nodes, and 

particularly how they were coloured, as a major aid. As with naming 

nodes, grouping nodes is relatively easy in Grasshopper, but it is not 

done by the majority of users (70% of the 2002 sampled models had 

no groups in them).

Factors in Understandability

There are different theories about how programmers come to understand 

code (Détienne 2001, 75) but all agree it is fundamentally a mapping 

exercise between the textual representation and the programmer’s internal 

cognitive representation. While the precise mechanisms of this mapping 

remain hidden, Green and Petre (1996, 7) observe that “programmers 

neither write down a program in text order from start to finish, nor 

work top-down from the highest mental construct to the smallest. 

They sometimes jump from a high level to a low level or vice versa, and they 

frequently revise what they have written so far.” This jumping between 

levels corroborates with Meyer’s (1997, 40-43) suggestion that structure 

helps programmers both to decompose high level ideas into smaller 

concepts, and to compose smaller parts into larger conglomerates. Yet my 

research has shown that the vast majority of architects neither compose 

nor decompose, they instead arrange components at one fixed level of 

abstraction. Architects presumably have in mind an overall notion of how 

the model works, but it seems without structure this overall perspective 

is lost along with the model’s legibility to designers who did not create 

the model. Designers are left to deduce a model’s overall behaviour solely 

through understanding the interaction of the model’s parts, which is an 

inference that none of the participants I observed came close to making.

The key finding of these thinking-aloud interviews is that designers find 

mapping between unstructured representations and their own internal 

cognitive representations difficult, if not impossible. Structure does not 
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just make these mappings easier, it largely determines whether they can 

be done at all. This is a concerning finding in light of how infrequently 

architects structure their models. Most designers could introduce structure 

with a few key alterations, the most effective of which seem to be: clearly 

naming parameters, grouping nodes together, and providing clearly 

defined inputs and outputs. These alterations seem to help communicate 

the model’s intention, making it vastly more understandable for designers 

unfamiliar with the model. In the following section I will discuss the 

impact of making these alterations to parametric models used in an 

architecture project.

6.5	 Structured Programming 

in Practice

Dermoid

By the third Dermoid workshop (in November 2010; fig. 51), the project 

team had a decided that Dermoid would consist of reciprocal hexagons 

formed from cambered wooden beams weaving under and over a guiding 

surface. The rationale for this structure is discussed in greater detail 

by Mark Burry (2011) in Scripting Cultures but for the purpose of the 

present discussion, suffice to say, the chosen design direction presented 

numerous modelling challenges. By the November workshop there were 

still many unknowns, including, the shape of the surface, the details of 

the beam joints, and the overall structural performance. These would 

remain unknown until days before the construction commenced in March 

2011 (having been calculated progressively through a series of physical 

modelling experiments). The unknowns suited the flexibility of parametric 

modelling, yet the reciprocal frame did not lend itself to parametric 

modelling since distributing a pattern on a doubly curved surface is a 

difficult problem made harder in this instance by the circular relationships 

of the reciprocal frame (which lend themselves to iterative solving rather 

than the linear progression of a parametric model). Thus, while months 

of work had occurred prior to the November workshop, most parts of the 

parametric model were still up for negotiation and required a degree of 

flexibility. I took the lead in developing the models for this stage of the 
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Figure 51: Key milestones in the development of Dermoid. 
Unlike a traditional design process, Dermoid’s design 
commences with investigations into the material properties 
of wood, and proceeds through detailing and design 
development, before concluding with a sketch of the form. 
This process is enabled to a large degree by the flexibility of 
the parametric models.
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project. In order to achieve the needed flexibility, I experimented with 

structuring the models. Doing so allowed me to consider the practicalities 

of structuring parametric models during a design project, and it also 

allowed me to observe how the structured models evolved once I handed 

them to other team members.

Structuring the Project

In the months prior to the November workshop, a number of key modelling 

tasks emerged as areas of research:

1.	 Distributing the pattern evenly over the doubly curved surface.

2.	 Calculating the intersection points of the reciprocal frame.

3.	 Shaping and detailing the beams.

In a conventional linear design process, these considerations would come 

as part of Design Development or Detailed Design. It is of significance that 

they should be the early stages of Dermoid’s design process (fig.  51). 

The dissociation with the orthodox design progression carries through 

to other stages of Dermoid’s design where, for example, the construction 

documentation was produced prior to finalising the overall form. While 

changing a project’s form after generating the construction documentation 

would ordinarily be extremely disruptive and time consuming, the 

flexibility of Dermoid’s parametric models accommodated these types of 

late changes relatively effortlessly. In many ways this is the antithesis of 

Paulson and MacLeamy’s front-loading (see chap. 2.2): rather than forcing 

designers to make critical decisions early in a project as a means to avoid 

expensive design changes, in Dermoid the cost of change is lowered to 

the point where critical decisions can be delayed until the designers best 

understand the consequences of these decisions –  even if this means 

delaying a decision until almost the end of a project. The flexibility of 

Dermoid’s parametric models essentially compressed the design cycle, 

allowing conceptual decisions to manifest quickly in construction 

documentation, allowing critical decisions to be delayed, and allowing the 

design process to begin with considerations not conventionally explored 

until later in the project.
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Figure 52: The outputs 
from the chain of 
parametric models that 
generate Dermoid.Stage-A 

Function:	 Generate the pattern 
Inputs:	 n/a 
Outputs: 	 2d network of lines

Stage-B 
Function:	 Projects lines onto surface  
Inputs:	 A surface; 2d lines 
Outputs: 	 A surface; 3d line pattern

Stage-C 
Function:	 Relaxes pattern to distribute 
	 lines more evenly  
Inputs:	 A surface; 3d line pattern 
Outputs: 	 A surface; 3d line pattern

Stage-D 
Function:	 Rotates each line to create the 
	 reciprocal frame and weaves 
	 the line under and over the 
	 surface to camber the beam 
Inputs:	 A surface; 3d line pattern 
Outputs: 	 Network of curves

Stage-E1 
Function:	 Creates flanges and webs 
	 along curves to visualise 
	 structure  
Inputs:	 Network of curves 
Outputs: 	 Array of surfaces

Stage-E2 
Function:	 Prepares construction 
	 documentation  
Inputs:	 Network of curves 
Outputs: 	 Laser cutting files
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The project team developed a number of parametric models prior to the 

November workshop as they explored the three initial areas of research 

– pattern distribution, intersection points, and beam details. These models 

naturally form a chain (fig. 52) that progressively generates Dermoid, 

beginning with a two-dimensional pattern (Stage-A) and ending with the 

construction documentation (Stage-E2). Each stage in this chain can be 

thought of as a module since each has a prescribed set of inputs (from 

the previous stage) and a distinct set of outputs (for the next stage). The 

demarcations of these modules was not something imposed at the start 

of the project, rather they naturally emerged and crystallised around 

the volatile points of the project (pattern distribution, Stage-A, B & C; 

intersection points, Stage-D; beam details, Stage-E2). In hindsight the 

structure follows David Parnas’s (1972, 1058) advice to decompose projects 

around “difficult design decisions or design decisions which are likely to 

change.” By decomposing Dermoid around key points of research, each 

research question had a respective parametric model that could change to 

accommodate research developments. Provided any new parametric model 

outputted all of the stage’s requisite data, changing the parametric model 

would not disrupt the overall project. This allowed the team members to 

work concurrently on different aspects of the project without interfering 

with each other’s work. The structure was also software agnostic provided 

each model returned the right outputs. This proved useful on wicked stages 

(Rittel and Webber 1973) like pattern distribution (Stages B & C) where 

the stage’s parametric model was rebuilt in at least five different software 

packages during the course of the design. Being able to modify stages of 

a project without disrupting the overall project is described by Meyer 

(1997, 40-46) as continuity. Although breaking a parametric model into 

six stages and manually feeding data between them may seem intuitively 

less flexible than using a single parametric model, the continuity offered 

by decomposing Dermoid into six distinct stages helped improve the 

project flexibility by facilitating team-work and by helping make changes 

less disruptive.
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Structuring the Models

I began experimenting with structuring the models driving Dermoid as 

I prepared them for the November workshop (fig. 53). The models had 

initially been created in an unstructured way. To add structure I normally 

had to do the following: prune the branches of code not contributing to 

the model’s outcome; add new nodes to name paths of data clearly; and 

group the nodes into modules by looking for places where the data was 

naturally channelled into one or two streams. Software engineers call this 

process of restructuring code, refactoring. By beginning with unstructured 

code that I later refactored into a structured model I perhaps missed out 

on using structure as a compositional and decompositional design aid 

(Meyer 1997, 40-46), or as Green and Petre (1996, 7) put it, the “jumps 

from a high level to a low level or vice versa”. While I normally follow the 

practices described by Meyer, Green, and Petre when writing textual code, I 

found it difficult to use structure as a guide to create these visual programs. 

I have experimented with teaching architecture students to create visual 

programs guided by the structure of Input-Process-Output diagrams 

(Davis, Salim, and J. Burry 2011). While this method has had modest 

success, particularly at getting students unfamiliar with programming 

to think algorithmically, structured programming still feels forced in the 

visual programming environment of Grasshopper. This preference for 

structure through refactoring unstructured models may be tied to how 

structure is implemented in Grasshopper, as I discussed earlier.

Figure 53: A section of 
the parametric model 
from Stage-D, which 
demonstrates the 
structure of the models 
used in the November 
Dermoid workshop.
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After Structure

After the November workshop the Danish team members took charge 

of finalising the parametric models as they prepared for Dermoid’s 

construction in March 2011 (fig. 51). This allowed me to observe how the 

structured models fared as major changes were made to them by designers 

unfamiliar with the model’s structure. Three critical modifications were 

made during this period:

1.	 The models in stages B and C (fig. 52) were replaced by a model in 

Maya, which used Maya’s Nucleus engine to derive Dermoid’s overall 

form and pattern.

2.	 The cambered beams were bifurcated into a wishbone structure.

3.	 The beam details and construction documentation were refined for the 

specific construction materials and methods.

The first modification (using Maya to derive the form and pattern) was 

simply a case of swapping models. Since the Maya model returned all the 

expected outputs, the continuity of the project was preserved and none 

of the surrounding models had to change. The other two modifications 

(changing the topology of the beam and altering the construction 

documentation) required extensive adaptations to the existing parametric 

models. These changes were primarily carried out by a team member 

who joined the project during the November workshop. While they were 

initially unfamiliar with the models and my rationale for structuring the 

models, they required very little guidance in modifying them (they seldom 

contacted me for assistance). In order to make the changes, the designer 

chose to combine all the stages of the project together into one massive 

model (fig. 54). The resulting model contains 4086 nodes, which makes 

Figure 54: The final 
parametric model used 
to design Dermoid. 
While this model looks 
messy, the model’s 
creator has actually 
composed the model out 
of a hierarchy of modules 
that make it relatively 
easy to understand the 
model given its size and 
complexity. Many of 
these modules are reused 
from earlier iterations of 
the project.
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it twice as large as the largest model from chapter 4.3 and approximately 

two hundred times larger than the average Grasshopper model. Without 

prompting from me, the designer had carefully composed the model from 

a hierarchy of modules. Almost all of the modules from the original model 

had been reused, and these were complemented with a large number of new 

modules the designer had created. The reuse of the modules demonstrates 

that the designer could understand them well enough to apply them in a 

new context, despite being initially unfamiliar with the project. While the 

modules were cumbersome to create, this type of reuse demonstrates clear 

benefits to structuring a project in terms of improving understandability, 

collaboration, and reuse.

The complexities of Dermoid, both in terms of geometry and in terms of 

collaboration, place it on the limit of what is currently possible in parametric 

modelling – and perhaps beyond what is practical with an unstructured 

visual program. Breaking the project into a hierarchy of stages seemed 

to make it possible for designers to collaborate using disparate software, 

while the modules within the models seemed to promote model reuse and 

improve model understandability. At both scales, structure was difficult to 

impose at the start of the project and instead tended to emerge from an 

unstructured beginning to be later refactored with a few relatively minor 

changes. Perhaps most significantly, the flexibility of this working method 

facilitated the reorganisation of the design process, which enabled the 

designers to delay critical decisions until they had the best understanding 

of their consequences, rather than forcing the decisions early in order to 

avoid the cost of later changes.

6.6	 Sharing Modules Online

By structuring Dermoid’s parametric models I had amassed a library of 

modules able to be reused on other projects (as they were in later versions 

of Dermoid). In order to share these modules with other designers, I 

created the website parametricmodel.com, which lets anyone download 

and use the modules under the Creative Commons Attribution-ShareAlike 

licence (2007). The pages for each module intentionally resemble the 

documentation programmers provide with libraries of modules; the page 

for each module starts out with a short blurb, notes the modules inputs 

and outputs, and then enters into a detailed description of how the module 



Figure 55: The 
homepage of 
parametricmodel.com as 
of 5 January 2013.

Figure 56: T he 
hyperboloid module 
download page. 
Like documentation 
that comes with 
many programming 
languages, the 
download page 
details what the 
module does, the 
parameters it 
requires, and the 
outputs it produces.
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works. At the time of writing, July 2012, parametricmodel.com has been 

running for twenty months, and in that time the 57 modules on the site 

have been downloaded 47,740 times by 19,387 people from 127 countries.13 

While I do not have access to the projects the modules have been reused 

on, the 47,740 downloads indicate that the modules are reusable in a wide 

range of contexts and useful to a large number of designers.

With the success of the module downloads, I was also interested in whether 

parametricmodel.com could encourage designers to modularise their 

models and share them via the website. When I launched parametricmodel.

com I designed the site so anyone could upload and share a module. In the 

module upload page I attempted to balance prescriptively enforcing a 

modular structure while minimising the obstacles to uploading. As such, 

the website coaxes users into creating modules by asking them to describe 

uploaded models with modular programming principles: defining the 

inputs and the outputs, describing the problem the module solves, and 

explaining how the module works. This has been relatively successful with 

all the uploaded models conforming to the modular pattern. Yet for all the 

modules downloaded, very few have been uploaded; for every thousand 

people who download a module, on average only one returns to contribute 

a new module. There are a whole host of reasons why architects may be 

reluctant to upload modules, which range from concerns about liability, 

to the effort and skill required in packaging a module, to a preference for 

contributing to other websites – particularly personal websites – where 

they may receive more control and more recognition. Despite the failure 

of parametricmodel.com to elicit a large number of contributions, it has 

been successful in demonstrating that thousands of designers want to 

reuse pre-packaged modules. As was shown with the Dermoid project, 

structure contributes to the reusability of components both by making 

them more understandable and by making them easier to extract for 

sharing. While structure may encourage sharing, there are other factors 

involved, including, intellectual property rights and the intrinsic rewards 

individuals receive for sharing. Parametricmodel.com shows how designers 

may benefit if these impediments are overcome, and the creation and 

sharing of modules becomes more widespread.

13	 The ten most active countries being: United States, United Kingdom, Germany, Australia, 
Italy, Austria, Spain, France, Russia, and the Netherlands.
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6.7	 Conclusion

Out at the edge of Copenhagen, out past the Royal Danish Academy of 

Fine Art, and in the secluded concrete studio filled with researchers from 

CITA and SIAL, we were facing a deceptively simple problem. The problem 

was not directly the one posed earlier – how can we fashion a doubly 

curved pavilion from a wooden reciprocal frame? With time the numerous 

difficulties of this proposition were solvable. Rather the deceptively simple 

problem was keeping the project flexible long enough for these discoveries 

to be made. Structuring Dermoid’s parametric models undoubtedly 

improved the project’s flexibility, enabling knowledge of Dermoid’s form 

and material strength to inform the project just days before construction.

I say the problem is deceptive because a model’s structure is not necessarily 

an obvious contributing factor to a project’s flexibility. Indeed, during 

the 1960s’ software crisis many software engineers overlooked the 

importance of program structure, often instinctively believing their woes 

were a product of perceived inadequacies in areas like project management. 

Today, however, structure is seen as so pivotally important to successful 

programming that even basic introductions to programming normally 

involve learning about structure, and some modern programming 

languages mandate the use of structure. Yet architects creating parametric 

models with visual programming languages are given only rudimentary 

tools for structuring projects and receive almost no guidance in the 

educational material on how to structure a project (one exception being 

Woodbury, Aish, and Kilian [2007] giving the structural recipes for 

common architecture problems). It is therefore not surprising that the 

majority of architects overlook something as deceptively simple as clearly 

naming parameters (81% do not name parameters) or using clusters 

in their Grasshopper models (97.5% do not use Grasshopper’s inbuilt 

modular structure, clusters; see chap. 6.3).

The widespread omission of structure in models created by architects 

makes for concerning statistics in light of the benefits structure provides. 

My thinking-aloud interviews seem to suggest that structure largely 

determines whether an architect can understand a model, which is a 

finding that confirms the existing research on the cognition of professional 

programmers. Yet using structure to cognitively jump “from a high level to 

a low level or vice versa” (Green and Petre 1996, 7) – such as professional 
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programmers often do – proved to be difficult in the visual programming 

environments used by architects. From my experience structuring Dermoid’s 

parametric models, structure came from refactoring unstructured models 

rather than being the scaffold onto which programs are decomposed 

and composed as Meyer (1997, 40-46) suggests. Nevertheless, breaking 

Dermoid into a hierarchy of modules made it possible for designers to 

collaborate using disparate software, and offered them the continuity to 

make radical changes late in the project. The degree of flexibility within 

this structure challenged the orthodox progression of the design process, 

enabling details to be examined much earlier whilst allowing ordinarily 

pivotal decisions to be explored right up until the point of construction. 

In essence this was the antithesis of Paulson and MacLeamy’s front-loading 

(see chap. 2.2): rather than making decisions early in order to avoid the 

expense of changing them later, in Dermoid the cost of change was 

lowered to the point where critical decisions could be delayed until they 

were best understood. The structure also enabled parts of the models to 

be extracted and reused by designers initially unfamiliar with the models. 

While structure potentially encourages reuse, parametricmodel.com shows 

sharing requires more than an easily decomposed structure. These benefits 

of structure – in terms of reuse, understandability, continuity, and design 

process flexibility – remain largely unrealised by architects. While this is 

concerning, structure can be introduced with a few simple alterations. 

The most effective strategies seem to be clearly naming parameters, and 

grouping nodes together by function with defined inputs and outputs. 

I have posited in this chapter that architects do not realise the benefits 

of these simple structural changes due to both the limitations of design 

environments and the way architects are educated, an argument I will pick 

up again in the discussion.
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7	 Case C: 
Interactive 
Programming

First iteration: Responsive Acoustic Surfaces.

Location: SmartGeometry 2011, Copenhagen, Denmark.

Project participants: Mark Burry, Jane Burry, John Klein, Alexander Peña 

de Leon, Daniel Davis, Brady Peters, Phil Ayres, Tobias Olesen.

Second iteration: The FabPod.

Location: RMIT University, Melbourne, Australia.

Project participants: Nick Williams, John Cherrey, Jane Burry, Brady 

Peters, Daniel Davis, Alexander Peña de Leon, Mark Burry, Nathan 

Crowe, Dharman Gersch, Arif Mohktar, Costas Georges, Andim Taip, 

Marina Savochina.

Code available at: yeti3d.com (GNU General Public Licence)

Related publications:

Davis, Daniel, Jane Burry, and Mark Burry. 2012. “Yeti: Designing 

Geometric Tools with Interactive Programming.” In Meaning, 

Matter, Making: Proceedings of the 7th International Workshop 

on the Design and Semantics of Form and Movement, edited by 

Lin-Lin Chen, Tom Djajadiningrat, Loe Feijs, Simon Fraser, 

Steven Kyffin, and Dagmar Steffen, 196–202. Wellington, 

New Zealand: Victoria University of Wellington.

Burry, Jane, Daniel Davis, Brady Peters, Phil Ayres, John Klein, 

Alexander Peña de Leon, and Mark Burry. 2011. “Modelling 

Hyperboloid Sound Scattering: The challenge of simulating, 

fabricating and measuring.” In Computational Design 

Modeling: Proceedings of the Design Modeling Symposium Berlin 

2011, edited by Christoph Gengnagel, Axel Kilian, Norbert 

Palz, and Fabian Scheurer, 89-96. Berlin: Springer-Verlag.
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7.1	 Introduction

To be writing code in Copenhagen at 3 a.m. was not an unusual occurrence. 

We had spent the past week in Copenhagen sleeping only a couple of hours 

each night as we rushed to get ready for SmartGeometry 2011. It turns out 

casting plaster hyperboloids is hard, much harder than the model makers 

from Sagrada Família make it look. And it turns out joining hyperboloids is 

hard, much harder than Gaudí makes it seem.1 When figure 57 was taken, 

we were just six hours away from the start of SmartGeometry 2011, and 

we were all exhausted from days spent fighting with the geometry and each 

other. So naturally, rather than verify the plaster hyperboloids joined as 

expected, we went to sleep for a couple of hours.

Sleeping is a decision we would come to regret two days later. 

The workshop was half way through and we had cut the formwork for 

roughly forty hexagonal plaster hyperboloid bricks, when we realised 

none of the hyperboloids joined together. Instead of sitting flush against 

one another, the brick’s wooden sides were angled such that they could 

only join together if there were slight gaps between the bricks. The error 

was small (less than 5mm on a brick 450mm wide) but these small errors 

accumulated through the stacking of the bricks, which caused visible gaps 

in the upper courses and prevented the topmost courses coming together 

at all (fig. 58). Without the time to recut the formwork, that single small 

1	 The Responsive Acoustic Surface was built to test the hypothesis that hyperboloid 
geometry contributed to the diffuse sound of the interior of Antoni Gaudí’s Sagrada 
Família. For more information about the rationale for using hyperboloids in the 
Responsive Acoustic Surface and for more information about the surface’s acoustic 
properties, see Modelling Hyperboloid Sound Scattering by Jane Burry et al. (2011).

Figure 57: John Klein 
(left) and Alexander 
Peña de Leon (right) in 
a Copenhagen hotel at 
3 a.m. writing code six 
hours before the start of 
SmartGeometry 2011.



156

Figure 58: The 
responsive acoustic 
surface installed at 
SmartGeometry 2011. 
Slight gaps are still 
visible in the top- and 
bottom-most rows.
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Figure 59: The 
responsive acoustic 
surface (foreground) 
with its counterpart, the 
flat benchmark surface 
in the background. The 
top of the responsive 
acoustic surface curves 
slightly backwards due 
to a small error in the 
shape of the brick. Bolts 
between the plywood 
frames help to pull the 
bricks together but also 
put the frame under a lot 
of stress.
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error threatened the whole viability of the project. Once again we were 

without sleep. Thankfully the timber formwork had enough pliability to 

accommodate the error, although if you look closely at figure 59 you can see 

the timber is under such tension the whole wall bows slightly backwards.

This single small error can be attributed to exhaustion: in our fatigued state 

we did not verify that the code’s math generated the expected intersections 

between hyperboloids. This could be seen as a failing of our project 

management skills – a failure to allocate sufficient time to verify the code’s 

outputs. But it could also be seen as a failing of the coding environment 

– a failure to provide immediate feedback about what the math in the code 

was producing. The notion that programming environments fail to provide 

designers with immediate feedback forms the foundation of Bret Victor’s 

(2012) manifesto, Inventing on Principle. Victor, a user experience designer 

best known for creating the initial interface of Apple’s iPad, describes how 

the interface to most programming environments leaves the designer 

estranged from what they are creating:

Here’s how coding works: you type a bunch of code into a text editor, 

kind of imagining in your head what each line of code is going to do. 

And then you compile and run, and something comes out… But if 

there’s anything wrong, or if I have further ideas, I have to go back to 

the code. I go edit the code, compile and run, see what it looks like. 

Anything wrong, go back to the code. Most of my time is spent working 

in the code, working in a text editor blindly, without an immediate 

connection to what I’m actually trying to make.

Victor 2012, 2:30

In this case study I follow a similar line of thinking, observing that 

typically for architects there is a significant delay between editing 

code and then, much later, realising your plaster hyperboloids do not 

fit together as expected. As such, I use this case study to consider how 

coding environments could provide architects with more immediate 

feedback about what their code produces. I begin by discussing the history 

of interactive programming and the lack of interactive programming 

environments for architects. I then describe an interactive programming 

environment I created, dubbed Yeti, and compare Yeti’s performance to 

two existing coding methods on three architecture projects (including 

revisiting the plaster hyperboloids of the Responsive Acoustic Surface). 

But first I want to return to Bret Victor’s manifesto.
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7.2	 The Normative 

Programming Process

In Inventing on Principle, Bret Victor (2012, 2:30) describes the normative 

programming process as, “edit the code, compile and run, see what it looks 

like.” This sequence of events is commonly known as the Edit-Compile-Run 

loop. In the loop (fig. 60), the programmer edits the text of the code [1], 

presses a button to activate the code [2], and then waits. They wait first for 

the computer to validate the code [3], then they wait for the computer to 

compile the code into machine-readable instructions [4], and finally they 

wait for the computer to run this set of instructions [5]. Only then can the 

programmer see what their code produces [6]. Victor (2012, 18:00) says 

that good programmers shortcut this process by mentally simulating the 

running of code – a somewhat perverse situation considering they are more 

often than not sitting in front of a machine dedicated to doing just that.

3 Code is validated

4 Code is compiled

5 Code is run

1 User writes code

2 User presses run

6 User sees output

The IDE

The viewport

The interpreter

Figure 60: The 
Edit-Compile-Run loop 
for a Rhino Python 
script. A designer must 
go through this loop 
every time they want 
to see what their code 
produces. In the best 
case it takes a couple 
of seconds to move 
between writing code [1] 
and seeing the output 
[6] but this period can 
be much longer if the 
script is computationally 
intensive to run.
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For architects, the delayed feedback from the Edit-Compile-Run loop proves 

problematic. Ivan Sutherland (1963, 8) disparagingly called this “writing 

letters to rather than conferring with our computers.” Yet shortcutting 

this process using mental simulation, as good programmers often do, 

clashes with Nigel Cross’s (2011, 11) observation that “designing, it 

seems, is difficult to conduct by purely internal mental processes.” Cross’s 

contention that designers need to have continual feedback, separate 

from their internal monologue, is shared by Sutherland (1965), Victor 

(2012), and many others (Schön 1983; Lawson 2005; Brown 2009). This 

view is reinforced by design cognition research that shows any latency 

between a designer’s action and the computer’s reaction is problematic for 

architects since delays exacerbate change blindness, which makes it hard 

for designers to evaluate model changes (Erhan et al. 2009; Nasirova et al. 

2011; see chap. 2.3). With designers potentially blind to the changes they 

make, Rick Smith (2007, 2) warns that a change to a parametric model 

“may not be detected until much later in the design phase, or even worse, 

in the more expensive construction phase.” Smith’s warning rings true with 

the hyperboloid bricks of the Responsive Acoustic Surface, where feedback 

from a coding error was not apparent until the bricks were stacked during 

the construction phase.

The Edit-Compile-Run loop prevails, argues Victor (2012, 28:00), because 

most programming languages “were designed for punchcards” where 

“you’d type your program on a stack of cards, and hand them to the 

computer operator, and you would come back later” – an “assumption 

that is baked into our notions of what programming is.” While punchcards 

may explain the origins of the Edit-Compile-Run loop in programming, 

there have been many developments in programming since the days of 

punchcards. In particular, significant developments have been made to the 

tools programmers use to write code, known as Integrated Development 

Environments (IDEs). Modern IDEs often augment the Edit-Compile-Run 

loop so programmers do not have to wait for feedback. For example, some 

IDEs identify simple logical errors before the code is run, and some IDEs 

suggest and explain programming commands while programmers are 

writing them (a feature known as autocompletion). Other IDEs allow the 

basic editing of running code, which enables programmers to make minor 

changes without cycling back through the edit-compile-run loop (this is 

known as interactive debugging). These types of IDE features makeup part 

of Section 2.3.1 of the Software Engineering Body of Knowledge Version 1.0 

3 Code is validated

4 Code is compiled

5 Code is run

1 User writes code

2 User presses run

6 User sees output

The IDE

The viewport

The interpreter



161

(Hilburn et al. 1999); a section of knowledge that often reinforces the 

notion that programming languages were designed for punchcards, while 

also offering ways of making Edit-Compile-Run loop more interactive.

The interactive feedback mechanisms of many modern IDEs have 

not filtered down to the environments architects write code in. 

Like professional programmers, architects use languages based on the Edit-

Compile-Run loop, with Leitão, Santos, and Lopes (2012, 146) pointing 

out that even popular languages like “RhinoScript are a descendant of a 

long line of BASIC dialects that started much earlier, in 1964.” But unlike 

professional programmers, who have the advantages of cutting edge 

IDEs, Leitão, Santos, and Lopes (2012, 143) say that in the context of 

architecture “the absence of a (good) IDE requires users to either remember 

the functionality or read extensive documentation.” Thus architects are 

left to contend with the historic Edit-Compile-Run loop without many of 

the interactive conveniences present in the IDEs used by modern software 

engineers. This lack of interactivity in the programming process causes 

pronounced latency between the designer writing code and the computer 

generating the geometric results, which makes evaluating code changes 

potentially difficult for architects.

7.3	 The Interactive 

Programming Process

Interactive programming (also known as live programming) seeks to remove 

any latency between writing and running code. Instead of a programmer 

activating the Edit-Compile-Run loop every time they want to see what 

their code produces, a programmer using interactive programming directly 

changes the code of an already running program.2 Bret Victor (2012) 

demonstrates interactive programming with a programming environment 

he created for drawing and animating two-dimensional objects (fig. 61). 

When Victor changes code in the text editor, the corresponding image 

produced by the code changes instantly – without Victor manually pressing 

2	 Interactive programming is primarily about changing code while it runs. Although this is 
useful for displaying code changes in real time, there are many other uses for interactive 
programming. A common use case is to update software that cannot be shut down (for 
example, life support systems and certain infrastructure systems). Instead of compiling 
and running a new instance of the software, software engineers can use interactive 
programming to apply code changes to the existing software while it runs.



Figure 61: Bret Victor’s 
(2012) IDE from 
Inventing on Principle. 
Since the programming 
environment is 
interactive, the code and 
the image are always 
in sync. As shown 
in the three frames, 
changes to the code also 
immediately change 
the image produced 
by the code – without 
the designer manually 
activating the Edit-
Compile-Run loop to 
see them.



Figure 62: Yeti, an 
interactive programming 
plugin for Rhino. 
Like with Victor’s IDE 
(fig. 61), the code and 
the model are always 
in sync. Whenever the 
code changes, the model 
produced by the code 
automatically changes 
as well.
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a button to execute the Edit-Compile-Run loop. With the code always 

in sync with the image it produces, Victor (2012, 2:00) argues that his 

environment gives designers “an immediate connection to what they 

are creating.”

To assist architects creating parametric models I developed an interactive 

programming environment named Yeti (fig.  62). On first glance Yeti 

looks similar to Victor’s interactive programming environment, however, 

there are a number of key differences between the two IDEs. The most 

obvious difference is that Victor’s environment focuses on the real-time 

drawing of two-dimensional objects, while Yeti supports the real-time 

remodelling of three-dimensional objects (since three-dimensional objects 

generally require more computational resources, making the calculations 

in real time is significantly more challenging than with two-dimensional 

objects). The second significant difference is that Victor’s presentation of 

his environment in January 2012 comes a number of months after I first 

presented Yeti, and released Yeti’s source code, in May 2011. While Victor 

was not the first to create an interactive programming environment, I have 

chosen to cite him both because he clearly articulates the problems with 

the normative programming process, and because his legacy of creating 

interfaces for Apple adds credibility to the argument that interactive 

environments, like Yeti, are important emerging areas of research 

for designers.

While Yeti predates Victor’s programming environment by a couple of 

months, a number of other interactive programming environments predate 

both of them by many years. The origins of interactive programming 

date back to the programming languages LISP (first version: 1958) and 

SmallTalk (first version: 1971), both of which allow programmers to modify 

code while it runs. The initial emphasis was on updating software without 

needing to shut down running programs (useful for critical systems). These 

techniques were extended, in particular by musicians, to allow the real-

time modification of code. For musicians, these interactive programming 

environments enable them to modify code driving musical compositions 

whilst immediately experiencing the modification’s sonic implications. The 

first performance with an interactive environment was by Ron Kuivila at 

STEIM in 1985 using the FORTH programming language (Sorensen 2005). 

In the early 1990s, interactive textual programming environments gave 

way to interactive visual programming environments like Max/MSP (the 
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precursors of the visual programming environments architects use today). 

While visual programming remains popular with musicians, a number of 

new interactive textual programming languages have emerged, including 

the Smalltalk based Supercollider (McCartney 2002) as well as the LISP 

based ClunK (Wang and Cook 2004) and Impromptu (Sorensen 2005). 

Outside the domain of music there is a scattering of interactive 

programming environments aimed at designers, such as SimpleLiveCoding 

for Processing and the widely used Firebug for CSS editing. While real-time 

interactive programming suits these creative contexts, the computational 

stress of three-dimensional design has meant that architects – prior to my 

research – have been unable to utilise interactive programming.

The crux of all interactive programming environments is removing 

the latency between writing and running code. Existing interactive 

programming environments achieve this in a number of ways:

•	 Automation Rather than waiting for the user to manually tell the Edit-

Compile-Run loop to execute, the loop can be set to run automatically 

and display the results whenever the code is changed – as is done 

in SimpleLiveCoding (Jenett 2012). This is a bit like stop-motion 

animation; the user sees a single program adapting to code changes but 

really they are seeing a series of discrete programs one after the other 

(like frames in a movie). In order for this animation to feel responsive, 

the elapsed time between the user changing code and the completion 

of the Edit-Compile-Run loop should ideally be a tenth of a second 

and certainly not much more than one second (Miller 1968, 271; 

Card, Robertson, and Mackinlay 1991, 185). For simple calculations 

these time restrictions are manageable. However, for complicated 

calculations it becomes impractical to recompile and recalculate the 

entire project every time the code changes, especially if the change only 

impacts a small and discrete part of the finished product.

•	 Sequencing For musicians using interactive programming, changes 

must happen relative to an underlying time signature. Code from 

Supercollider (McCartney 2002), ClunK (Wang and Cook 2004), 

and Impromptu (Sorensen 2005) all generate timed sequences of 
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actions for the computer to perform. As the code changes, new 

actions are automatically queued into the sequence while old actions 

are seamlessly discontinued (Sorensen 2005), which avoids the 

stopping and restarting necessary when using the Edit-Compile-Run 

loop. This method has been adapted to generate simple geometry 

in time to music (Sorensen and Gardner 2010, 832). However, for 

architects doing computationally demanding geometric calculations, 

generating geometry rhythmically is not as important as generating 

geometry quickly. For this reason, sequencing  is unsuitable in an 

architectural context.

•	 Hot-Swapping The Edit-Compile-Run loop recompiles every line of 

code even if some lines have not changed since the last time the loop 

was activated. Instead of compiling every line of code, hot-swapping 

allows small chunks of code to be independently compiled and then 

integrated with the unchanged parts of the program – while the overall 

program continues to run. This reduces the latency of compilation 

but does not reduce the latency of running the code.3 Since geometric 

calculations take orders of magnitude longer than the compilation of 

code, the savings from hot-swapping in an architectural context are 

likely comparable to those of automation.

Although there are a range methods for reducing the latency between 

writing and running code, none of the existing methods are suited to 

the unique challenges of performing geometric calculations in real time. 

These are challenges not present in other design disciplines currently using 

interactive programming (such as web-design, musical performance, and 

two-dimensional animation). Despite the range of textual interactive 

programming environments available to other designers, architects 

currently have no option but to contend with the separation induced by 

the Edit-Compile-Run loop.

3	 Although the code continues to run when it is hot-swapped, there is no way of easily 
knowing how the hot-swapped code transforms the geometric model. Therefore, to 
update the model, the code must be rerun, which means hot-swapping in this context 
only saves compilation time and not running time.
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7.4	 Interactive Visual 

Programming

While none of the existing interactive textual programming environments 

are particularly suited to architects, many non-textual programming 

environments allow the interactive creation of geometry. Grasshopper, 

Houdini, and GenerativeComponents all overcome the problem of 

performing geometric calculations in real time by representing geometric 

relationships with a Directed Acyclic Graph (DAG) (Woodbury 2010, 

11-22). As explained in chapter 5.3, a DAG is a type of flow-chart where 

nodes represent geometric operations and directed edges represent the 

flow of data between pairs of nodes. When a node is changed, the model 

is updated by propagating the changes along the directed edges to update 

the affected nodes. This minimises the calculations involved in updating 

the model since the only nodes recalculated are those affected by the 

change. Rather than recalculating every geometric operation, as with the 

Edit-Compile-Run loop, the selective updating of a DAG saves unnecessary 

geometric calculations, greatly compressing the time between writing and 

running code.

While visual programming enables architects to work interactively, there 

are still limitations when compared to textual programming. In the previous 

chapter (chap. 6) I demonstrated that visual programming environments 

do not support structure as elegantly as many textual programming 

environments do. Partly citing my research from the previous chapter, 

Leitão, Santos, and Lopes (2012, 160) conclude, “learning a textual 

programming language takes more time and effort than learning a visual 

programming language, but this effort is quickly recovered when the 

complexity of the problems becomes sufficiently large.” I suspect visual 

programming is easier to learn partly because the interactivity of visual 

programming provides the continuous feedback Green and Petre (1996, 8) 

say novice programmers require. While interactive visual programming 

languages are successful in the domain of architecture, there remains an 

opportunity to create an interactive textual programming language that 

combines the structural benefits of textual programming with the ease of 

use brought about by the interactivity of visual programming.
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Yeti is an interactive textual programming environment I developed to 

support the creation of three-dimensional geometry. At first glance Yeti 

looks much like any other textual programming environment, a large 

textbox for writing code is positioned underneath a horizontal menu of 

icons (fig. 63). The icons give the only outward hint of Yeti’s interactive 

behaviour: instead of an icon for running the code there is an icon for 

pausing Yeti’s continuous evaluation of the code. Beyond these icons the 

difference between Yeti and other IDEs only really becomes apparent when 

the designer begins writing code. Rather than writing a block of code and 

then pressing the run icon to see geometry generated by the code (through 

the Edit-Compile-Run loop), designers writing code in Yeti always see what 

their code generates. The geometry is in sync with the code that produces 

it, so every time the code changes the geometry automatically changes 

as well.

In order to perform geometric calculations fast enough that they 

feel interactive, Yeti employs a DAG to coordinate recalculating the 

geometry. This is essentially the same concept powering the interactivity 

of the visual programming environments Grasshopper, Houdini, and 

GenerativeComponents. However, Yeti’s DAG is not generated through a 

visual interface, rather it is defined textually through the relational data 

format YAML.

Figure 63: The Yeti 
interface. The primary 
element is a textbox for 
writing code. The code 
within the textbox is 
automatically coloured: 
numbers (black), 
geometry (blue), names 
(red), references to 
named geometry (green). 
Above the textbox are a 
row of icons, from left to 
right: save, open, pause 
interactive updating, 
force update, and bake 
geometry (export to 
Rhino). The geometry 
created by the code is 
displayed in another 
window (not shown).

7.5	 Introducing Yeti
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The YAML Language

YAML’s inventor, Clark Evans (2011), describes YAML as a “human friendly 

data serialization standard.” While YAML is technically a data format, Yeti 

uses it like a dataflow programming language to describe the structure of a 

DAG.4 As such, Yeti’s code is paradigmatically distinct from the procedural 

programming languages that underlie most other textual programming 

environments used by architects (see chap. 5.2). Yeti may therefore seem 

initially unfamiliar to designers versed in procedural programming. 

However, YAML’s relatively minimal syntax is fairly easy to pickup.

YAML comprises primarily of key:value pairs. The key is always assigned 

the value following the colon. For example, the code to assign a variable 

the value of 10 is:

variable: 10

More complicated values are assigned through a list of key:value pairs 

that are separated from the parent key with indentation. For example, a 

point at the coordinate (-10,10,13) can be written as:

4	 By itself YAML is not a programming language since it describes data rather than 
computation (the concept of Turing completeness is therefore not applicable to YAML). 
But in Yeti this distinction is blurred because the YAML data describes the structure of a 
DAG, which in turn does computation. Some will say YAML is a programming language 
in this context, others will say it is still a data format.
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node in the graph, while values express either a property of the node, or a 

relationship to another node. For example:
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Relationships between geometry can be established by labelling keys with 

names beginning with an ampersand [&] and then referencing their names 

later (references begin with an asterisk [*]). For example, the following 

code creates a point named basePoint and generates a line extending 

vertically from basePoint:

Yeti extends the YAML language so that designers can define new keys. 

To create a key, a designer must first create a prototype object for the 

key. The prototype object begins with the YAML document marker 

[---] immediately followed by the name of the object (names start with 

an exclamation mark [!]). Under this header, the designer defines the 

geometry of the prototype object. Any geometry given a name starting 

with an exclamation mark [!] becomes a parameter of the object that 

can be specified when the object is instantiated. The end of the object is 

delimitated by the YAML document marker […]. For example, the code 

from the preceding example can be turned into an object named column 

and then used to generate two columns starting at (20,10,0) and (2,30,0), 

like so:
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The user defined keys help structure the Yeti code. Like a module they 

encapsulate code with defined inputs and outputs (denoted by the 

exclamation mark [!]). However, they go further than the modules 

discussed in chapter 6 by providing more object-oriented features like 

instantiation (the creation of multiple instances that draw upon the same 

prototype) and inheritance (one user defined key can be based on another 

user defined key). In essence, YAML allows Yeti to mix the structure of 

textual languages with the performative benefits of directed acyclic graphs.

The Yeti Development Environment

There are a number of other interactive features in the Yeti development 

environment. Many of these are commonly part of the IDEs software 

engineers use but, according to Leitão, Santos, and Lopes (2012, 143), 

they are seldom a part of the IDEs architects use. The following describes 

some of Yeti’s main interactive features.

Autocompletion:

As a designer types, Yeti predicts what the designer is typing and suggests 

contextually relevant keys, names, and objects. This saves the designer 

from looking up keys and parameters in external documentation.

Figure 64: Yeti 
offering autocomplete 
suggestions as the 
designer types. Left: 
After the designer types 
the letter L, Yeti lists all 
the keys that start with 
the letter L. When the 
designer selects a key, 
Yeti will then suggest 
parameters for that 
key. Right: The designer 
begins typing a reference 
and Yeti produces a 
list of names used in 
the code.
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Robust Error Handling:

Yeti highlights errors as they are written (common errors include spelling 

mistakes, syntax errors, and duplicate names). Errors generally cause 

procedural languages to stop running because there is no clear way to 

progress past an error in a sequence of instructions. Since Yeti does not 

use a sequence of instructions but rather a dataflow language, Yeti can 

continue to run code that contains errors by only parsing the error-free 

portions of the code into a DAG. This is important in an interactive context 

since evaluating code while it is being written often requires evaluating 

incomplete code that contains errors.

Figure 66: Left: The 
column object’s code 
expanded. Right: The 
column object’s code 
collapsed (the code 
is hidden but still 
functioning).

Code Folding:

The code for a prototype object can fold into a single line, effectively hiding 

it. These folds allow the user to improve juxtaposability by hiding irrelevant 

parts of the code while exposing the parts currently important.

Figure 65: Errors in 
Yeti are coloured grey 
and underlined. In both 
of these examples, Yeti 
continues to function 
even though there are 
errors in the code. Left: 
Radius is not a valid 
parameter for a line, so 
it is marked as an error. 
Right: Since there is 
no key named &b, the 
pointer *b is marked as 
an error; and because 
there are two keys 
named &a, the second 
one is highlighted as 
an error.
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Interactive Debugging:

To help clarify the often-enigmatic connection between code and geometry, 

clicking on any key in Yeti highlights the geometry controlled by that key. 

A parameter window is also generated so that the user can drill down and 

inspect all the properties driving the geometry. Similarly, clicking on any 

referenced name highlights where the reference comes from in the code 

and the geometry it refers to. Yeti is able to provide all this information 

since the keys in the YAML code are directly associated with parts of the 

model’s geometry via nodes in the DAG.

The impediments to generating geometry with interactive programming 

are overcome in Yeti by employing a DAG to manage geometric calculations. 

The DAG helps reduce the latency between writing code and seeing 

the geometry produced. Furthermore, the DAG also helps power other 

interactive features like robust error handling and interactive debugging. 

In the following pages I consider how these features perform when used 

on three design projects, and I compare this performance to that of other 

programming environments available to architects.

Figure 67: Clicking on 
the word point: in the 
code produces a window 
allowing the designer to 
inspect all the properties 
and parameters of the 
point. At the same 
time, the selected code 
and the corresponding 
geometry are highlighted 
in orange.
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7.6	 Benchmarking Yeti

Method

To test the viability of generating parametric models with interactive 

programming, I carried out three design tasks using Yeti (fig. 68). It was not 

clear whether interactive textual programming would cope with creating 

a parametric model, let alone creating one in the midst of an architecture 

project. I therefore selected three design tasks that stressed a number of 

essential parametric techniques while letting me clearly isolate and observe 

the performance of interactive programming. The first two design tasks 

come from a pair of tutorials Axel Kilian developed in 2005. The tutorials 

teach designers to model a pair of parametric roofs and introduce “several 

key parametric modelling concepts” (Woodbury, Aish, and Kilian 2007, 

226) such as arrays, constraints, and instantiation. Recreating the tutorials 

in Yeti ensures these key parametric modelling concepts are also possible 

with interactive programming. The third design task revisits the plaster 

hyperboloids of the Responsive Acoustic Surface. Given the computational 

challenges in calculating the intersections between hyperboloids, the 

project is an ideal setting for finding the limits of Yeti’s interactivity.

As a benchmark I repeated the three design tasks with two established 

methods of programming, both of which I am adept at: interactive visual 

programming in Grasshopper (version 0.8.0052), and textual programming 

with Rhino Python (in Rhino 5, version 2011-11-08). By repeating the 

design tasks I was able to compare Yeti’s performance to that of established 

programming methods through the metrics established in chapter  4. 

In particular I was interested in the following qualitative metrics:

•	 Functionality: Are all the modelling tasks able to be performed by 

every programming method?

•	 Correctness: Do programs do what is expected?

•	 Ease of use: Are the modelling interfaces easy to use?

Figure 68: The three 
benchmark projects 
in Yeti. Left to right: 
Kilian’s first roof, 
Kilian’s second roof, 
and the hyperboloids 
from the Responsive 
Acoustic Surface.
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I was also interested in the following quantitative metrics from chapter 4.3:

•	 Construction time: How long did the respective models take to build?

•	 Lines of Code: How verbose were the various programming methods?

•	 Latency: How quickly did code changes become geometry?

The intention is not to definitively say one programming method is better 

than the other, rather the intention is to capture the primary differences 

between these programming methods while verifying that Yeti can 

complete the same key design tasks. Recent studies employing a similar 

method include: Janssen and Chen’s (2011) comparison of the visual 

programming environments Grasshopper, GenerativeComponents, and 

Houdini; Leitão, Santos, and Lopes’s (2012) comparison of Grasshopper 

and the textual language Rosetta; and Celani and Vaz’s (2012) comparison 

of Grasshopper and the textual language Visual Basic. The  first hand 

accounts in these studies are largely successful at establishing the primary 

differences between the programming methods they compare, differences 

I aim to establish in this case study of interactive textual programming.

Benchmark 1 and 2: Kilian Roofs

When Axel Kilian developed his pair of parametric modelling tutorials 

in 2005, neither Grasshopper nor Rhino Python had been invented and 

GenerativeComponents was still two years away from being commercially 

available.5 For architects who had never encountered parametric modelling, 

Kilian’s tutorials showcased “several key parametric modelling concepts 

and quickly yielded a form with some architectural credibility” (Woodbury, 

Aish, and Kilian 2007, 226). In particular, each tutorial teaches students 

how to model a roof that adapts to its context, while also introducing 

students to dataflows, arrays, b-splines, and the instantiation of objects 

that are topologically identical but physically different. To complete these 

tutorials in Grasshopper, Rhino Python, and Yeti, all the programming 

methods must be capable of performing the essential parametric modelling 

techniques outlined in Kilian’s tutorials.

5	 It is remarkable to consider how much parametric modelling has changed in the seven 
years since Kilian’s tutorials, both in terms of the number of architects using parametric 
models and in terms of range of parametric modelling environments available to 
architects. While Kilian’s tutorials are just seven years old, in many respects they have 
an historic credence through which it is possible to track the development of parametric 
modelling.
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Figure 69: Four 
variations of Kilian’s first 
roof generated with Yeti. 
The roof rests on a grid 
of columns whose height 
varies to accommodate a 
tree under the roof. The 
height of any particular 
column is a function of 
the distance between 
the column and a point 
representing the tree. 
When the point moves, 
the roof readjusts to 
allow for the tree’s 
new location.

Functionality and Correctness

Both of Kilian’s roofs could be recreated in Grasshopper, Python, and 

Yeti. In this sense all the environments were correct: the code from every 

modelling environment correctly generated the expected geometry. There 

are however differences in functionality. Yeti has a limited geometric 

vocabulary in comparison to either Grasshopper or Python. While this 

was not a hindrance in creating the roof models, on other projects this 

may prevent Yeti from correctly generating the required geometry (at least 

until Yeti’s vocabulary is further developed). In this sense Grasshopper 

and Python are more functional than Yeti since they both offer what 

Meyer (1997, 12) calls, a far greater “extent of possibilities provided by 

a system.” Beyond the geometry of the various modelling environments, 

there are a number of key differences in functionality that I will expand 

upon shortly, including the management of lists, the baking of geometry, 

and the creation of custom objects.

Construction Time

The first roof (fig. 69) took me four minutes to build in Grasshopper, six 

minutes to build in Yeti and sixteen minutes to build in Python. I recorded 
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myself building the Python model and in the video it is clear that the roof 

took a while to build because I spent a lot of time writing code to manage 

arrays and bake geometry. Since I had no feedback about whether my 

code worked, I then had to spend time testing the Python code by cycling 

through the Edit-Compile-Run loop. Both Grasshopper and Yeti have 

built-in support for simple arrays and geometry baking so I did not have 

to spend time creating them, which led to simpler models and a reduced 

construction time.

The second roof (fig. 70) is geometrically more complicated than the first. 

In Grasshopper the model took twenty-five minutes to build, involving 

many manipulations of the standard array to generate the diagonal pattern. 

These array manipulations were less of a problem in Yeti and Python since 

both environments allowed me to define a diagonal panel that could then 

be instantiated across a surface. Because of the way geometry is generated 

relative to axes in Yeti and Python, modelling the roof’s parabolic ribs and 

aligning them to the path was surprisingly difficult in both programming 

environments. In the end the model took forty minutes in Yeti and sixty-

five minutes in Python.

Figure 70: Four 
variations of Kilian’s 
second roof generated 
with Yeti. The roof 
is made an array of 
parabolas lofted together 
to make a surface that 
is then diagonally 
crisscrossed with tubes. 
The parabolas follow the 
path of a curve and if 
the curve is adjusted, the 
roof readjusts to follow 
the curve.



row: &rows
  treeLoc:
    x: 1
  xLoc:
    from: -5
    to: 5
    
loft: &roof
  addprofiles: *rows.splines

--- !row
unit: &rowOfUnits
  treeLoc: !treeLoc
  unitLoc:
    x: !xLoc
    y:
      from: -5
      to: 5
    visible: 0
      
spline: !splines
  addpoints: *rowOfUnits.column.end
...

--- !unit
point: !treeLoc
point: !unitLoc
  visible: 0
  
vector: &toTree
  start: *unitLoc
  end: *treeLoc
  visible: 0
  
double: &height (10/(*toTree.length + 1))

line: !column
  start: *unitLoc
  direction:
    x: 0
    y: 0
    z: *height
...

class column:
  def __init__(self, location, tree):
    distance = rs.Distance(location, tree);
    height = 10 / (distance + 1)
    self.topPt = Rhino.Geometry.Point3d(location);
    self.topPt.Z = height;
    self.line = Rhino.Geometry.Line(location, self.topPt)
        
  def getTopPt (self):
    return self.topPt
        
  def draw(self, doc):
    doc.Objects.AddLine(self.line)

class columnRow:
  def __init__(self, x, tree):
    self.columns = list()
    pts = list()
    for i in range(10):
      self.columns.append(column(Rhino.Geometry.Point3d(x, i, 0), tree))
      pts.append(self.columns[i].getTopPt())
    self.curve = rs.AddInterpCurve(pts)
        
  def getProfileGUID(self) :
    return self.curve
        
  def draw(self, doc):
    for col in self.columns:
      col.draw(doc)
    
tree = Rhino.Geometry.Point3d(0, 0, 0)

rows = list()
profiles = list()
for i in range(10):
  rows.append(columnRow(i, tree))
  profiles.append(rows[i].getProfileGUID())
    
rs.AddLoftSrf(profiles)
    
doc = Rhino.RhinoDoc.ActiveDoc

for row in rows:
  row.draw(doc)
    
doc.Objects.AddPoint(tree)

Figure 71: The roof from 
Kilian’s first tutorial 
in Yeti (left), Python 
(right), and Grasshopper 
(bottom). While the 
Yeti and Python code 
are of a similar length, 
the lines of code do 
not correspond due 
to the differences in 
programming paradigms. 
The Yeti code is also 
noticeably sparser than 
the Python code. But 
both the Python and 
Yeti code looks verbose 
when compared to 
the equivalent code in 
Grasshopper.

Lines of Code

The Yeti scripts and the Python scripts were of a similar length (fig. 71); 

the first model required thirty-six lines of code in Yeti and thirty-five in 

Python, while the second model required ninety-three lines of code in 

Yeti and seventy-eight in Python. Although the programs have a similar 

number of lines, there are very few correlations between lines due to the 

differences between the two programming paradigms (Yeti being dataflow 

based and Python being object-oriented). The Yeti code is noticeably 
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sparser than the Python code and contains on average just ten characters 

per line, whereas the Python code contains twenty-five characters per 

line. This is predominantly because Python is a general-purpose language, 

so differentiating commands generally requires more verbosity than in 

Yeti (for example, the point command in Python requires twenty-two 

characters [Rhino.Geometry.Point3d] whereas in Yeti it requires just six 

characters [point:]).

The size of a visual program is not directly comparable to the size of a 

textual program but, having said that, the Grasshopper model for the first 

roof does look smaller and less complex than the corresponding textual 

programs (fig.  71). The Grasshopper model for the first roof contains 

just ten nodes and has a cyclomatic complexity of five, which means it 

is about half the size of the median Grasshopper model (see chap. 4.3). 

In  comparison, the Grasshopper model for the second roof contains 

fifty-two nodes and has a cyclomatic complexity of twenty-four (fig. 72). 

Figure 72: The roof from 
Kilian’s second tutorial 
in Grasshopper. The 
lack of structure in this 
model makes it difficult 
to understand the 
model’s fifty-two nodes.

The second model begins to exhibit some of the problems typical of larger 

unstructured visual programs that I discussed in chapter 6. In particular, 

it is almost impossible to infer the model’s function by just looking at the 

nodes, and even knowing the model’s function, it is difficult to do things 

like identify the nodes that generate the roof shape or understand why four 

nodes generate points just past midway in the model. While the code for 

the Yeti and Python models can also be hard to understand, the structure 

inherent to textual programs at least provides a few clues to aid reading 

the models.
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Latency

Yeti remained interactive while designing both of the roofs. On the first 

roof, code changes took on average 50ms to manifest in changes to the 

geometry. On the second roof these changes took 27ms. Grasshopper was 

similarly responsive, implementing changes on the first model in 8ms and 

taking 78ms on the second model. All of these response times fall well 

inside Miller’s threshold of 100ms, which is the threshold for a system 

to feel immediately responsive (Miller 1968, 271; Card, Robertson, and 

Mackinlay 1991, 185). Python fell outside this threshold, taking 380ms 

to generate the first model and 180ms to generate the second. These times 

only measure the running time of the Python program and do not include 

the time the spent activating and waiting for the Edit-Compile-Run loop. 

When these other activities are taken into consideration, the Python code 

takes on average between one and two seconds to execute.

Ease of Use

Ease of use is hard to define since it depends on the “various levels of 

expertise of potential users” (Meyer 1997, 11). The Kilian models 

demonstrate that, at the very least, interactive textual programming in Yeti 

can match the functionality both of non-interactive textual programming 

in Python, and of interactive visual programming in Grasshopper. These 

functional similarities, combined with similarities in code length and 

slight improvements in construction time, indicate that interactive 

programming is a viable way to textually program parametric models. 

The reductions in latency are apparent when reviewing the videos of the 

various models being created. In the videos of Grasshopper and Yeti, the 

geometry is continuously present and changing in conjunction with the 

code. The distinction that often exists between making a parametric model 

(writing the code) and using a parametric model (running and changing 

the code) essentially ceases to exist in Yeti since the model is both created 

and modified through the code: toolmaking and tool use are one and the 

same. However, it remains to be seen whether the interactivity borne of a 

reduced latency improves the ease of use independent of the any particular 

user’s expertise.
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Benchmark 3: SmartGeometry Redux

In preparation for SmartGeometry 2011, the project team experimented 

with creating the Responsive Acoustic Surface in a variety of parametric 

modelling environments: Grasshopper, Digital Project, and Open 

Cascade. To best utilise the relative strengths of the various modelling 

environments, the hyperboloid brick was developed in a workflow that 

threaded the design between Grasshopper and Digital Project. Changes 

in this workflow took many minutes to propagate due to the time taken 

in exchanging data between software and the time taken in finding the 

intersections between hyperboloids. There was minimal feedback during 

this process and, as a result, the final relationship between hyperboloids 

was not obvious. The relationship would only become obvious when we 

built the hyperboloids, stacked them, and realised they did not quite 

fit together. The hyperboloids’ fit comes down to subtle nuances in the 

planarity of the intersections. Given the difficulty of calculating these 

Figure 73: Four 
variations of the 
Responsive Acoustic 
Surface’s hyperboloid 
layout generated with 
Yeti. Slight changes in 
the hyperboloid position 
significantly alter the 
shape of the bricks.
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intersections, the Responsive Acoustic Surface challenges all varieties of 

parametric model. By repeating the project with Yeti, the intention was 

to see if Yeti could remain interactive on such a challenging project and 

to see if the interactivity helped to understand the design better prior 

to construction.

Creating an array of hyperboloids was relatively straightforward in Yeti and 

not substantively different to distributing panels over the roof in Kilian’s 

second tutorial. The challenging part was intersecting the hyperboloids 

and then deciding which part of hyperboloids to keep. In a procedural 

paradigm this is easily expressed with an if-then-else structure:6 if 

part of the hyperboloid is past the intersection plane then delete the part 

else keep the part. The if-then-else structure is not yet included in Yeti 

primarily because adding it does not seem consistent with the rest of Yeti’s 

syntax. As a temporary workaround, the logic for deciding which part of 

the hyperboloid to keep was expressed procedurally in Yeti rather than 

expressed in Yeti’s YAML code. These challenges indicate some important 

functional differences between the dataflow paradigm of Yeti and the 

procedural paradigm of other textual languages.

The hyperboloid intersections were too arduous to calculate in real time 

with either Grasshopper or Yeti. The project could only be completed 

by pausing the interactivity, which effectively reverted Yeti back to the 

manual Edit-Compile-Run loop. Being able to revert to this non-interactive 

paradigm was useful to grind out the computationally taxing geometry 

of the hyperboloids, but reverting to a non-interactive paradigm also 

removes the primary impetus for creating Yeti in the first place. So while 

interactive textual programming is useful for straightforward calculations, 

on computationally difficult projects the Edit-Compile-Run loop may be 

inescapable, which possibly makes errors, like those contained in the 

original hyperboloid bricks, unavoidable.

6	 The if-then-else structure is one of the three Böhm and Jacopini (1966) identified. They 
denote it with the symbol ∏. See chap. 6.2.
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SmartGeometry Redux Redux: Fabpod

A second iteration of the Responsive Acoustic Surface was developed 

as part of a design studio Nick Williams and John Cherrey ran at RMIT 

University in 2012 (with assistance from a research team led by Jane Burry 

and Mark Burry). The studio considered how the hyperboloid bricks of the 

Responsive Acoustic Surface could be adapted to acoustically diffuse sound 

in a meeting room. During the studio, the students designed a variety of 

meeting rooms for an open-plan office and later constructed one of the 

designs, which was dubbed the FabPod.

Based on analysis I had done for the Responsive Acoustic Surface, it was 

known that the hyperboloid bricks would only enclose spherical volumes.7 

Previous research by Brady Peters and Tobias Olesen (2010) had suggested 

that the best acoustic performance would come from non-periodic tilings 

of the hyperboloids. For the FabPod, this was achieved by distributing 

the hyperboloids irregularly across spherical surfaces, and then trimming 

each hyperboloid where it intersected its neighbours. Doing so required 

7	 The bricks have a timber frame supporting the edges of the hyperboloids. Since it was 
only practical to build the frame from planar sections, the edges of the hyperboloids had 
to be planar as well. My analysis for the Responsive Acoustic Surface had demonstrated 
that adjoining hyperboloids only had planar edges in a limited range of circumstances: 
(1) the adjoining hyperboloids had to be of the same size, (2) the normals had to either 
be parallel or converge at a point equidistant from the hyperboloids. This can only occur 
if the hyperboloids are distributed on a planar surface with the normals parallel to 
the surface normal, or on a spherical surface with the normals pointing towards the 
centre. The FabPod uses spherical surfaces since they were shown to have better acoustic 
properties.

Figure 74: The entrance 
to the FabPod, situated 
within the RMIT 
DesignHub, Melbourne 
(March 2013).
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finding the intersections between 180 hyperboloids, which was vastly 

more complicated than finding the intersections between the 29 regularly 

distributed hyperboloids of the Responsive Acoustic Surface. Further 

adding to the difficulty, the intersections were needed not only for creating 

the construction documentation at the end of the project, but also for 

generating models accurate enough to run the acoustic simulations used 

regularly throughout the project. Given how often these intersections 

were needed, I once again considered whether this process could be 

made interactive.

I began re-examining how the hyperboloid intersections were being 

generated. In previous parametric models (including the Yeti model) the 

hyperboloids were represented as NURBs surfaces and the intersections 

were calculated using numeric algorithms. While there are various numeric 

algorithms for finding the intersections between NURBs surfaces, in 

essence, all the algorithms involve iteratively moving a curve along one 

surface until the curve lies within a specified tolerance of the other 

surface (Patrikalakis 1993). Analytic equations are an alternative to using 

numeric algorithms. An analytic equation derives directly from a surface’s 

mathematical formula, which allows the intersection curve to be generated 

by directly solving the equation rather than spending computational 

resources doing iterative calculations. While analytic equations have some 

potential efficiencies, prior to this research, there was no existing analytic 

equation for calculating hyperboloid intersections.

Figure 75: Left: An early 
study of hyperboloid 
intersections that I 
produced in January 
2011 for the Responsive 
Acoustic Surface. The 
model proves that 
hyperboloids distributed 
on a spherical surface 
intersect with planar 
curves. Right: The 
intersections between 
hyperboloids also form 
a Voronoi pattern; 
shown is the output 
from the FabPod’s 
spherical Voronoi 
parametric model.
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Generating the analytic equation for the hyperboloid intersections was a 

multi-stage process. I first proved that the intersection planes between 

hyperboloids correspond with the pattern from a spherical Voronoi 

algorithm I developed (fig. 75). Lines between the Voronoi pattern and the 

sphere centre always correlate with points on the hyperboloid intersection 

curves. I derived an analytic algorithm to find these points by taking the 

formula for a hyperboloid:

And the formula for a line:

Substituting to eliminate x, y & z:

Which rearranges to give the value of t from the original line formula:

Using this analytic equation I developed a parametric model in 

Grasshopper for calculating the FabPod’s hyperboloid intersections. 

In the previous Grasshopper and Yeti models, calculating the intersections 

between 180 hyperboloids took approximately two and a half minutes 

(150,000ms). By utilising the analytic equation I was able to generate 

the same intersections in 250ms, which is one six-hundredth of the 

previous times and fast enough to feel interactive. With the intersections 

calculated so quickly, students in the workshop were able to make many 
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small adjustments to their hyperboloid layouts while receiving real-time 

feedback about potential construction problems (edges that were too 

short, and hyperboloids that were too close or too far apart; fig.  76). 

All of these problems had to be eliminated in order for the FabPod to 

be constructible. I experimented with using hill-climbing and dynamic 

relaxation to remove the problems, but the search space was too disjointed 

to make this type of optimisation viable. Therefore the only way to ensure 

the FabPod’s constructability was to move each hyperboloid until the 

construction problems were resolved. If students had to wait two and a 

half minutes to see the outcome of every movement this would have been 

an unbearable task, which makes the real-time feedback supplied by the 

analytic algorithm an essential component in the FabPod’s viability.

Typically software engineers caution against spending large amounts of 

time optimising algorithms to reduce latency. Bertrand Meyer (1997, 9) 

warns, “extreme optimizations may make the software so specialized as 

to be unfit for change and reuse.” This is certainly true of my analytic 

algorithm, which is so highly tuned to calculating the FabPod’s hyperboloid 

intersections that it is of little use to any other project. On the other-

hand, the generalised optimisations of Yeti are applicable in a wide range 

of circumstances, but not powerful enough to ensure the viability of the 

FabPod. In reducing parametric model latency there is a balance to find 

between extendability, correctness, reusability; a balance activated by the 

architect’s ability to explore multiple ways of generating parametric models.

Figure 76: Left: The 
final spherical Voronoi 
pattern used in the 
FabPod. The blue and red 
lines provide feedback 
about the spacing of 
the hyperboloids and 
their constructability. 
Right: The final 
parametric model of the 
FabPod’s hyperboloid 
intersections. The 
colours correspond with 
construction materials.
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Figure 77: Panorama 
of FabPod in the final 
stages of construction 
at the RMIT 
DesignHub, Melbourne 
(February 2013).
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7.7	 Conclusion

Unlike at SmartGeometry 2011, I was not up at 3 a.m. writing code in the 

hours before the start of the FabPod workshop. Even more thankfully, 

there were no undetected errors lurking in the hyperboloid bricks and the 

project was constructed largely without incident. There are many reasons 

for this improvement: we knew the geometry better, we had a better 

construction system, the project was better managed, and we had better 

feedback while we were designing. Rather than blindly typing code and 

hoping (as we had done at SmartGeometry 2011) that the code output 

was correct, at the FabPod workshop we had immediate feedback regarding 

potential construction errors.

Immediate feedback has not always been possible for architects developing 

parametric models. Historically, geometric designers had to make a choice: 

either use an interactive visual editor, accepting the problems of scale this 

raises (see chap. 6); or forgo interactivity in favour of writing the code with 

text. Many people, including Ivan Sutherland (1963, 8), Bret Victor (2012), 

and Nigel Cross (2011, 11), have suggested that forgoing interactivity is 

undesirable since feedback is a vital part of the design process and one best 

delivered immediately. Their intuition is backed up by cognitive studies 

that show that novice programmers need progressive feedback (Green 

and Petre 1996, 8), and that designers suffer from change blindness when 

feedback is delayed (Erhan et al. 2009; Nasirova et al. 2011; see chap. 2.3). 

In other design disciplines, designers have access to a range of interactive 

textual programming environments yet, for architects, interaction and 

textual programming were incompatible prior to my research.

In this chapter I have demonstrated how Yeti’s novel method of interactive 

textual programming supports architects designing geometry. Unlike 

existing methods of interactive programming – which are ill equipped to 

accommodate the computational intensity of geometric calculations – Yeti 

enables the interactive creation of geometry by using a Directed Acyclic 

Graph (DAG) to manage code changes. In order to generate the DAG, Yeti is 

based on the relational markup language YAML, which is paradigmatically 

different to procedural programming languages but comparable in terms 

of construction time, code length, and functionality. Unlike many 
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procedural programming environments, Yeti also incorporates a number 

of innovations software engineers have developed to make the Edit-

Compile-Run loop feel more interactive, such as real-time error checking, 

autocompletion, and interactive debugging.

By using YAML to create a DAG, Yeti is able to reduce the latency between 

writing code and seeing the geometric results. On certain projects, like 

Kilian’s two roofs, the reduction in latency transforms a task that designers 

would typically do without any feedback into one designers can do with 

constant feedback. As a result, writing code and modifying code in Yeti 

become one and the same. On other projects, like the hyperboloids of the 

Responsive Acoustic Surface, Yeti does not reduce the latency sufficiency 

for interaction to occur and Yeti has to fall back on the Edit-Compile-Run 

loop. However, the FabPod demonstrates that designers can further reduce 

latency by trading off extendability, correctness, and reusability. In the case 

of the FabPod, this reduction in latency made a significant contribution 

towards identifying and then eliminating any construction problems. 

This indicates that qualities of a parametric model’s flexibility – like the 

model’s latency – can have a discernible impact on a project’s design. 

These qualities can themselves be designed through the composition 

of the parametric model or through the selection of the programming 

environment. Yeti demonstrates how knowledge from software engineering 

can offer a pathway towards more diverse programming environments that 

can be tuned for particular attributes of parametric modelling. Yeti is just 

one manifestation of this knowledge and there are many more possibilities 

that make programming environments for architects an obvious location 

for future development.
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8	 Discussion: 
Beyond 
Toolmaking

Currently “little explicit connection” exists 

between the practice of parametric modelling 

and the practice of software engineering, writes 

Robert Woodbury (2010, 66). In my research I 

have sought to establish such connections by 

exploring whether the design of software can 

inform the design of flexible parametric models. 

More specifically, I have taken three concepts 

from the Software Engineering Body of Knowledge 

1.0 (Hilburn et al. 1999) and observed, using 

a reflective practice methodology, their affect 

when applied to the parametric models of various 

architecture projects. In the following pages I 

reflect upon what these case studies contribute to 

our understanding of parametric modelling and, 

in particular, our understanding of parametric 

modelling’s relationship to software engineering. 

I argue there are connections between software 

engineering and parametric modelling centred 

around shared challenges, shared research 

methods, and shared design practices. These 

connections position software engineering as an 

important precedent for architects; a relationship 

that has implications for how parametric 

modelling is taught, for how parametric modelling 

is integrated in practice, and for how we conceive 

of parametric modelling.
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8.1	 Shared Challenges

The challenges with parametric modelling are rarely reported, although 

they easily experienced. Thomas Fischer (2008, 245) concludes his 

doctoral thesis by lamenting that firsthand accounts of “failures and 

dead-ends … seem to be rare and overshadowed by the great number of 

post-rationalised, outcome-focused reports on digital design toolmaking.” 

Against this backdrop, one contribution of my research has been to collate 

the fragmented reports of parametric modelling failures (see chap. 2.3). 

Sometimes these reports are just a single offhand sentence tucked into a five 

hundred-page thesis revealing the unnervingly catastrophic behaviour that 

if the “topology of a project changes the [parametric] model generally needs 

to be remade” (Gerber 2007, 205). Sometimes these reports come from 

experts with decades of parametric modelling experience, which inspires 

them to write tell-all papers about changes breaking models, about a lack of 

reuse, and about changes having unintended consequences (Smith 2007). 

These fragmented reports collectively signal that the networks of explicit 

functions underlying parametric models are vulnerable to being broken by 

the very thing they are designed to accommodate: change (see chap. 2.3). 

In many cases the complexity of the parametric relationships leave the 

designer with only two choices: delay the project and rebuild the model, or 

avoid the change all together and accept an outcome that was not so much 

created with a parametric model as much as it was created for a parametric 

model. This is a challenge often encountered but rarely published.

Software engineers face similar challenges (see chap. 3.1). Like architects 

creating parametric models, software engineers need to express outcomes 

in logically precise instructions for the computer. These instructions are 

susceptible to being broken as the outcomes of the project inevitably 

change with the project’s development. For a period in the 1960s, 

scientists feared the breakages would be insurmountable and the limits of 

computation would not be computer speed but rather the cognition of the 

programmers creating and maintaining software (Naur and Randell 1968, 

chap. 7.1). The challenges of 1960s software crisis gave rise to the discipline 

of software engineering (see chap. 3.1). These are challenges that software 

engineers have been grappling with for decades, challenges that resemble 

the fragmented reports of parametric modelling failures.
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An important caveat is that creating software is similar, but not identical, 

to creating architecture. Broadly speaking, parametric models have a 

very particular user (often the model’s developer or colleague), product 

(typically the product is the architecture rather than the model), team 

size (normally just a few people), and project lifetime (often measured in 

months) (see chapter 3.2 for more details). None of these idiosyncrasies are 

necessarily abnormal in the context of software engineering, but they are 

not necessarily common either. This suggests that not all of the challenges 

faced by software engineers are equally relevant to architects. For instance, 

architects are likely to have more in common with the challenges faced 

by a small team of software engineers delivering a project on a tight 

schedule than they are with the challenges faced by a large team of software 

engineers developing an operating system to last many years. With this 

caveat in place, there are many commonalities between the challenges of 

architects and software engineers.

In some respects the commonalities are unsurprising. A parametric model 

is, after all, simply a type of algorithm (see chap. 2.1; Dino 2012). Even as 

far back as 1993, reports were surfacing that parametric modelling was 

“more similar to programming than to conventional design” (Weisberg 

2008, 16.12). Given the known “common ground” (Woodbury 2010, 66) 

between the two practices, the surprise is that almost no literature 

connects the struggles of architects with the struggles of software 

engineers (Woodbury being one exception but even within his writing 

this connection is only tangentially explained). My research suggests that 

the challenges architects using parametric models encounter with change 

are shared to some degree by software engineers, a connection that has 

implications for how architects may address these challenges.
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8.2	 Shared Methods

The flexibility of a parametric model is often framed in a binary of 

failure and success. My research suggests flexibility is far more nuanced. 

Parametric models appear to have multiple types of flexibility that are 

traded off against one another through modelling decisions. To articulate 

these flexibilities in the case studies I have drawn upon the vocabulary 

software engineers use to describe qualities of computer code. The case 

studies show the applicability of quantitative descriptions like lines of 

code, cyclomatic complexity, construction time, modification time, latency, 

and dimensionality (see chap. 4.3), as well as Bertrand Meyer’s (1997, 

chap. 1) qualitative descriptions of correctness, robustness, extendability, 

reusability, compatibility, efficiency, portability, ease of use, functionality, 

and timelessness (see chap. 4.4). While these sixteen metrics appear to 

give a relatively full picture of flexibility, there is certainly scope for further 

connections between shared methods of appraising software engineering 

and parametric modelling.

The vocabulary of software metrics helps articulate the differences between 

various parametric models in my research. By quantitatively measuring 

2002 parametric models generated by 575 designers I have been able to 

show that model size and cyclomatic complexity are strongly correlated, 

just like they are in software engineering (see chap. 4.3). The survey also 

established that the average Grasshopper model contains twenty-three 

nodes, with a high cyclomatic complexity, and virtually no structure 

(see chap. 4.3 & 6.3). This is first time a large collection of architectural 

parametric models has been analysed, and it is perhaps the first description 

of parametric modelling not reliant upon firsthand accounts. In the case 

studies I was able to combine the quantitative and qualitative metrics 

to triangulate a more comprehensive understanding of each parametric 

model’s flexiblity. For example, in the interactive programming case 

study (chap. 7) it was shown that Yeti’s impact on model latency also 

had implications for the construction time, functionality, ease of use, 

and correctness of the model. Being able to describe the flexibility of a 

parametric model using a vocabulary more nuanced than the current 

binary of failure and success is a potentially important contribution.

It is important to caution that these measurements are not necessarily 

predictors of model behaviour. A model may have a low cyclomatic 
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complexity and low latency, be robust and easy to use, but still break with 

an unanticipated change. Another model, a model that looks to be in far 

worse condition, may go through the same changes effortlessly. In a similar 

vein, these metrics are unlikely to measure successfully a project’s progress 

or quality. Attempts to manage programmers using similar metrics have 

never been widely successful, which has led one prominent advocate of 

software engineering metrics, Tom DeMarco, to recently say:

My early metrics book, Controlling Software Projects: Management, 

Measurement, and Estimation (1982), played a role in the way many 

budding software engineers quantified work and planned their 

projects. In my reflective mood, I’m wondering, was its advice correct 

at the time, is it still relevant, and do I still believe that metrics are a 

must for any successful software development effort? My answers are 

no, no, and no.

Tom DeMarco 2009, 96

This is a significant retraction from a software engineer perhaps best 

known for coining the adage, “you can’t control what you can’t measure” 

(DeMarco 1982, 3). Although this adage may not ring true, and although 

software metrics may not be useful in predicting parametric model 

behaviour, they are still a valuable vocabulary for researchers describing 

what a model has done.

In applying these various metrics I have built upon the research methods 

shared between software engineering and architecture. These methods are 

already connected to some degree, since software engineers and architects 

cite common sources like Schön and Cross in their research design. The 

connection has been further bolstered in recent years by software engineers 

adopting lean development methods that “sound much like design” 

(Woodbury 2010, 66), and by attempts to position software engineering 

(and its associated research) within the field of design (Brooks 2010). 

While software engineers have shown a willingness to learn from design 

research, this has largely been an asymmetric exchange. My research has 

gone against the prevailing by drawing upon software engineering research 

methods and methodologies to structure research about architecture. 

While the case studies have shown the potential of this exchange, there 

remains considerable scope to establish further connections between 

shared methods of research in software engineering and architecture.
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8.3	 Shared Practices

The challenges that change presents for both software engineers and 

architects have pushed both to improve their practices. The progress of 

one has been largely unbeknownst to the other, which is perhaps most 

evocatively illustrated in the parallel curves drawn simultaneously by 

architect Boyd Paulson (1976) and software engineer Barry Boehm 

(1976) (see chap.  2.2 & 3.1). Both demonstrate, neither aware of the 

other, that changes become exponentially more expensive as a project 

progresses. This cost has seen both architects and software engineers 

attempt to avoid making changes by employing a practice known as front-

loading. In the decades since Paulson first drew his curve, architects have 

regularly rehashed the curve and its conclusions to justify the practice of 

front-loading (Patrick MacLeamy is almost always misattributed as the 

originator, see chap. 2.2). At the same time, in the decades since Boehm 

first drew his curve, the practice of software engineering has improved to 

the point where some commentators have suggested cost now approaches 

a horizontal rather than vertical asymptote. This is a practice that lets 

software engineers “embrace change” (Beck 1999) rather than avoiding 

change with front-loading.

The Software Engineering Body of Knowledge Version 1.0 (SWEBOK.1999) 

(Hilburn et al. 1999) attempts to catalogue the knowledge of a software 

engineer after three years of practice. In my thesis I have hypothesised that 

aspects of this body of knowledge are applicable not only to the practice of 

software engineering but also the to the practice of parametric modelling 

(see chap.  3.2). In my three case studies I have considered how three 

aspects of the SWEBOK.1999 – programming paradigms, programming 

structure, and programming environments – affect the practice of 

parametric modelling:

•	 In Case Study A (chapter 5) I considered how programming paradigms 

impacted the creation of parametric models for the Sagrada Família. 

I developed a new method of parametric modelling using logic 

programming and found this to influence the parametric model’s 

construction time, modification time, latency, and extendability. This 

case study suggests a model’s programming paradigm is a key control 

point in tuning the model’s flexibility.



200

•	 In Case Study B (chapter 6) I experimented with changing the structure 

of Dermoid’s parametric models. Despite structure being a fundamental 

part of software engineering, the overwhelming majority of the 2002 

parametric models I surveyed had no structure. The restructuring of 

Dermoid’s models demonstrated that model structure, rather than 

model size or cyclomatic complexity, is likely the greatest determinant 

of model understandability. This has implications for model reuse and 

project continuity, with structure helping support changes late in the 

Dermoid project.

•	 In Case Study C (chapter  7) I applied innovations from software 

engineering  Integrated Development Environments (IDEs) to 

create a novel interactive programming environment specifically 

for the challenges of modelling geometry. Across a series of projects 

this environment reduced the latency of writing code, which has 

implications for the change blindness (see chap.  2.3) designers 

sometimes experience when making changes. This case study suggests 

that the environments architects use to write programs can themselves 

be sites of innovation.

These case studies each individually contribute a novel method of 

parametric modelling to the field of architectural design (each has been 

previously published: Davis et al. 2012; Davis et al. 2011a; Davis et al. 

2011b; Davis  et  al. 2011c). I have been able to prototype these new 

approaches by building upon numerous developments belonging to what 

the SWEBOK.1999 classifies as Computing Fundamentals; developments 

in programming languages, geometric APIs, operating systems, and 

computer hardware. Even ten years ago there was so little to build 

upon that creating any sort of parametric modelling environment (like 

GenerativeComponents) was considered a major achievement. If this trend 

continues – and at the moment there is no reason to suspect it will not – 

over time it should become even easier to test and apply new modelling 

approaches. For example, I rewrote Yeti (the interactive programming 

environment from chapter 7) to run upon the newly developed pythonOCC 

and Django frameworks, with HTML5 WebGL as the rendering engine 

(which was only a few months old at the time). This rewritten version 

of Yeti runs on any web browser (fig. 78) and suggests a future where 

developments in Computing Fundamentals empower individuals to rapidly 

invent novel modelling methods for the peculiarities of a project.
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Collectively the three case studies indicate that the software engineering 

body of knowledge is a fertile ground for improving the practice of 

parametric modelling. Software engineers have, according to Young 

and Faulk (2010, 439), spent significant time considering “the essential 

challenges of complexity and the cost of design” since this is the “primary 

leverage point” in a discipline where “the costs of materials and fabrication 

are nil.” The case studies demonstrate that the work software engineers 

have put into addressing these challenges – challenges partly shared by 

architects – are often applicable to the practice of parametric modelling. 

Yet, the case studies only begin to explore the application of this knowledge. 

Even my work on structuring parametric models (chap. 6) only touches 

the surface of an extremely rich area of software engineering. Likewise, 

my research into language paradigms and programming environments 

presents only one instance of many potential possibilities. Other 

promising sites for future research (identified in chapter 3.2) include the 

design, coding, and testing stages of Software Product Engineering as well 

as Software Management (which is an area of knowledge with many obvious 

connections to architecture, but one that I have not directly explored in 

my research).

The software engineering body of knowledge is not the silver bullet to the 

challenges architects face when working with parametric models. It bears 

remembering that less than half of all software projects in 2012 were 

successful (The Standish Group 2012; The Standish Group 2009; Eveleens 

and Verhoef 2010). What the body of knowledge offers is a precedent for 

thinking about the practice of parametric modelling. In the case studies 

these all involved tradeoffs, for example, logic programming (chap. 5) 

facilitated the un-baking of explicit geometry but also negatively impacted 

the model’s modification time and ease of use (for a detailed reflection 

on these tradeoffs see the discussions in chapters 5, 6, & 7). Yet within 

these tradeoffs are options: options to manipulate the flexibility of the 

parametric model in ways that did not exist before. Potentially the software 

engineering body of knowledge and the connections my research reveals 

between shared challenges, shared research methods, and shared design 

practices offers a precedent for partly controlling a parametric model’s 

flexibly – an act that would have significant implications for the practice 

of architecture.



Figure 78: The WebGL 
version of Yeti runs on 
any computer with a 
web browser and does 
not require the user to 
install any proprietary 
software like Rhino. 
Top: Yeti running inside 
the Chrome browser 
on a desktop computer. 
Middle and Bottom: 
Yeti running inside the 
Safari browser on an 
iPad (images taken in 
December 2011).
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8.4	 Implications

For Education

The Software Engineering Body of Knowledge Version 1.0 (Hilburn et al. 

1999, 20) not only represents what practicing software engineers know, 

it also represents what software engineers are taught (see chap. 3.2). If the 

challenges architects and software engineers face are similar, and if the 

software engineering body of knowledge suggests practices to alleviate 

these challenges, the question arises: should architects be taught about 

software engineering when they learn about parametric modelling?

The teaching of parametric modelling has typically been devoid of reference 

to the practice of software engineering, which is unsurprising given the lack 

of connection between parametric modelling and software engineering at 

other levels. Robert Aish (2005, 12) says he aims to get designers to think 

algorithmically “without demanding that designers become programmers.” 

Aish (2005, 12) goes on to suggest that designers would benefit from what 

is almost the antithesis of software engineering: a reduction in the “logical 

formalism” of parametric models. This ambition comes through in the 

parametric modelling environments Aish has developed while working at 

Bentley and Autodesk. When architects learn to use these environments, 

they are ordinarily taught the “keystroke-by-keystroke instructions to 

achieve specific tasks” says Robert Woodbury (2010, 8). Consequently, 

the typical parametric modelling pedagogy follows the practices of teaching 

non-parametric CAD software much more than it follows the practices of 

teaching programming and software engineering (see chap. 6.3). Woodbury 

(2010, 9) argues that the cause (although perhaps it is a consequence) 

comes from designers being “amateur programmers” and naturally wanting 

to “leave abstraction, generality and reuse mostly for ‘real programmers’.”

My research suggests that there may be a danger to teaching parametric 

modelling without the accompanying background of software engineering. 

With parametric modelling often simplified to keystroke-by-keystroke 

sequences, it is perhaps unsurprising that even simple software engineering 



204

practices, like naming parameters, are not undertaken in 81% of the 2002 

models I examined (see chap. 6.3). Regardless of the cause, the consequence 

is that these unstructured models are demonstrably incomprehensible 

to other designers. This may be an acceptable situation if designers are, 

like Woodbury (2010, 9) characterises them, just quickly creating one-off 

parametric models “for the task at hand.” Yet the reported challenges of 

making changes to parametric models indicates that many designers are 

generating and retaining models for more than the immediate task at 

hand. Designers are developing parametric models that evolve throughout 

the duration of the project, and designers are frequently using their models 

to address more than an individual task, often capturing the entire logic 

of a project within a single parametric model (see chap. 2.3). Each of 

the case studies in this thesis demonstrates how knowledge of software 

engineering can help architects through these challenging circumstances. 

Designers seem ill served by an education that seemingly avoids discussion 

of these challenges in favour of keystroke-by-keystroke instructions that 

mimic post-rationally glorified parametric projects. The potential danger 

in sheltering designers from this knowledge is that rather than making 

parametric modelling easier, it actually become harder in practice.

How parametric modelling should be taught remains an open question 

and one deserving of further attention. My research tentatively indicates 

that designers require some understanding of software engineering to get 

past the point of making tools that solve isolated tasks. As such, there 

might be a more nuanced spectrum to the binary Woodbury constructs 

between amateur and real programmer. Identifying the best way to 

progress designers along this spectrum is outside the scope of my research, 

however, I will speculate that the way software engineers are taught may 

offer another connection to guide the future instruction of designers.
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For Practice

Another open question implicated in this research concerns how parametric 

modelling will impact the practice of architecture. As the practice of software 

engineering has improved, and as programmers have flattened Boehm’s 

curve into Beck’s curve (see chap. 3.1), the process of software engineering 

has radically changed. Boehm’s curve suggested a practice whereby change 

is avoided through front-loading. Programmers are organised in a rigid 

hierarchy to push a project through an uncompromising linear sequence 

of requirements, design, construction, and maintenance (see chap. 3.1). 

Beck’s  curve suggests an alternative practice whereby iterations and 

continual feedback allow developers to “embrace change” (Beck 1999) 

even late in the project (Brooks 2010). Small teams of programmers 

self-organise to spiral through stages of planning, acting, and reflecting. 

The Standish Group’s industry survey suggests that these agile processes 

offer “three times the success rate of the traditional waterfall method [a 

synonym for front-loading] and a much lower percentage of time and cost 

overruns” (The Standish Group 2012, 25).

The Dermoid case study from chapter 6 signals how similar manipulations 

of Paulson and MacLeamy’s curve (fig.  79) may impact architectural 

practice. The Dermoid design process began by exploring both material 

properties and beam propagation strategies, an exploration that would 

typically fall into the design development stage of an orthodox design 

process. The design iterated for over a year, cycling through full-scale 

prototypes, conceptual parametric models, structural analysis, and design 

detailing. One of the last decisions to be finalised by the team was the 

shape of Dermoid, which would ordinarily be a pivotal decision made 

early in the process (possibly on a napkin). By using parametric models 

to delay this decision, the design team was able to determine Dermoid’s 

shape at a point where they best understood how the shape would impact 

the structure, the site, the budget, the construction schedule, and the 

experience of inhabiting Dermoid. This is essentially the reverse of Paulson 

and MacLeamy’s front-loading: rather than making decisions early in order 

to avoid the expense of changing them later, in Dermoid the cost of change 

was lowered to the point where critical decisions could be delayed until 

they were best understood. Robert Woodbury has hypothesised about such 
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Figure 79: Paulson and MacLeamy’s curve (see chap. 2.2). The typical design effort is 
transferred to an earlier stage of the project – a point where the cost of change is low.
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changes to the design process, but provides no examples of this occurring 

in practice:

Parametric modelling introduces a new strategy: deferral… Changing 

the order in which modelling and design decisions can be made is 

both a major feature of and deliberate strategy for parametric design. 

Indeed, a principal financial argument for parametric modelling is its 

touted ability to support rapid change late in the design process.

Woodbury 2010, 43

The parametric models used in the Sagrada Família’s frontons, in Dermoid, 

and in the FabPod all demonstrate how parametric models can accommodate 

late-stage changes. These changes to the fronton’s angle, to Dermoid’s 

shape, and to the FabPod’s layout would ordinarily be prohibitively time 

consuming, but the flexibility of the respective parametric models helped 

lower the cost of change to the point where the changes were welcomed 

late in the design process. In contemplating how flexibility may impact the 

practice of software engineering, Kent Beck asked:

What would we do if all that investment paid off? What if all that work 

[improving flexibility] and whatnot actually got somewhere? What if 

the cost of change didn’t rise exponentially over time, but rose much 

more slowly, eventually reaching an asymptote? What if tomorrow’s 

software engineering professor draws [figure 13] on the board?

Beck 1999, 27

The same questions can be asked of architects. If software engineering 

techniques enable more flexible parametric models, then perhaps 

tomorrow’s architecture professors will not be drawing Paulson or 

MacLeamy’s curve (fig. 79) on the board but rather a curve that resembles 

figure 80. My research suggests that the consequence of flattening the 

cost of change extends beyond financial savings and beyond the ability 

to make late changes. The real consequence may be a more iterative and 

malleable design practice; a practice where the positioning of design effort 

is not dictated by the cost of change but rather by the requirements of 

the project.
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Figure 80: An alternative to Paulson and MacLeamy’s curve (shown above). Rather than 
shifting design effort in relation to the cost of change, it may be possible to shift the cost 
of change in relation to design effort. My research suggests that parametric models can 
potentially lower the cost of design changes, allowing designers to defer key decisions until 
later in the project – by which point they are likely to understand the decision’s design 
consequences better.
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Beyond Toolmaking

Edsger Dijkstra, a software engineer I have cited frequently in this thesis, 

has said of software engineering’s relationship to toolmaking:

Computers are extremely flexible and powerful tools and many feel 

that their application is changing the face of the earth. I would venture 

the opinion that as long as we regard them primarily as tools, we might 

grossly underestimate their significance. Their influence as tools might 

turn out to be but a ripple on the surface of our culture, whereas I 

expect them to have a much more profound influence in their capacity 

of intellectual challenge.

Dijkstra 1970, 7

Architects have long characterised CAD software as a type of tool; whether 

it is John Walker in 1983 trying to make “AutoCAD become synonymous 

with ‘drawing tool’” (1983, 1) or whether it is Robert Aish (2011, 23) 

more recently saying, “software developers do not design buildings. Their 

role is to design the tools that other creative designers, architects and 

engineers use to design buildings.” Aish goes on to explain the asymmetric 

relationship borne of “tools transmitting advantage from the toolmaker 

to the tool user.” This relationship between maker and user is disrupted by 

parametric modelling. As Mark Burry (2011, 8) observes, “digital design 

is now fully assimilated into design practice, and we are moving rapidly 

from an era of being aspiring expert users to one of being adept digital 

toolmakers.” He continues, “the tool user (designer) becomes the new 

toolmaker (software engineer)” (M. Burry 2011, 9 [brackets are Burry’s]). 

This unification of the user and the maker calls into question the distinction 

between user and maker that has been inherited from other CAD software. 

To borrow the words of Edsger Dijkstra (1970, 7), by regarding parametric 

models primarily as tools, we might [have] grossly underestimated their 

significance.

The distinction between using and making persists in much of the current 

discourse regarding parametric models. It persists explicitly in the likes 

of Roland Hudson’s (2010) PhD thesis, Strategies for Parametric Design in 

Architecture, when he continually refers to “completed parametric models” 

almost as if model making cumulates with a definite point of completion 

from which tool use and designing can begin (see chap. 2.1). It persists 
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when Robert Woodbury (2010, 9) portrays the parametric model as a 

tool for adequately doing design tasks but never being the design task, 

saying “the task is foremost, the tool need only be adequate to it” (2010, 

9). It persists when Benjamin Aranda and Chris Lasch (2005) write in 

their book, Tooling, that “the job of designing begins” (2005, 9) only once 

the tool is made. It persists in architectural education, says John Frazer 

(2006), because “design computation is still only seen by many as ‘just 

a tool’ and remote from the real business of creative design, which can 

be mainly blamed on the dull minds of those who were most part left to 

teach computing – often as if it were a separate subject.” It persists when 

Patrik Schumacher (2009a, 15) defines parametricism in terms of stylistic 

outputs coming from “parametric design tools and scripts.” And it persists 

when Mark Gage tells architects to “use computation, but stop fucking 

talking about it” (2011a, 1) and later instructs them to hire software 

engineers “because these tools are so new to architecture” (2011b, 133). 

In a less explicit way, the separation between making and use persists in 

many contemporary definitions of parametric modelling. When authors 

define parametric as being all of design, or only the designs that change, 

or design in the style of parametricism, they implicitly focus on what 

parametric models do (see chap. 2.1). By focusing on the doing, many of 

these definitions overlook the unique features of a parametric model, such 

as the presence of explicit relationships linking parameters to outcomes; 

features that distinguish parametric models from traditional manual tools 

and from other forms of design representation.

“There is something different, unprecedented, and extraordinary about 

the computer as it compares to traditional manual tools,” argues Kostas 

Terzidis (2006, 24). For Terzidis this difference lies in the inability of 

humans to reason about computational processes such as parametric 

modelling. He goes on to remark somewhat cattily in an endnote, 

“architects such as Neil Denari, Greg Lynn, or Peter Eisenman use the 

term tool to describe computational processes yet none of them has any 

formal education in computer science” (2006, 34). Indeed, discussions of 

computer science and software engineering are almost entirely absent 

from discussions around parametric modelling. Architecture students are 

generally not taught about software engineering, there is “little explicit 

connection” (Woodbury 2010, 66) in the academic literature, and many 

prominent parametric modelling commentators (a number of whom do 

not themselves use parametric models [M. Burry 2011, 37]) seem more 
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caught up in determining if parametric modelling constitutes a new movement 

in architecture than they are in acknowledging the real challenges faced by 

architects using parametric models.

My research has revealed three major connections between parametric 

modelling and software engineering; connections that link shared challenges, 

shared research methods, and shared design practices. It is in the shared 

challenges that the analogy of toolmaking begins to unravel. These challenges 

are often “overshadowed by the great number of post-rationalised, outcome-

focused reports on digital design toolmaking” (Fischer 2008, 245). Yet, in the 

cracks between the post-rationalised veneer, there are fragments of parametric 

models that have been shattered by the very thing they were designed to 

accommodate: change (see chap.  2.3). These catastrophic failures are not 

from designers quickly creating one-off parametric models “for the task at 

hand” (Woodbury 2010, 9). Instead, these failures often concern changing the 

logic of a model that represents an entire project (see chap. 2.3). To borrow a 

toolmaking analogy, these changes essentially involve turning a tee-square into 

a french curve while it is being used; a change that is different, unprecedented, 

and extraordinary compared to any previous drawing tool. Being able to go 

back and modify a parametric model is a far more distinguishing feature than 

any outward resemblance to tools in AutoCAD. It is in these modifications that 

designers are sometimes coming unstuck, but it is also in these modifications 

that parametric modelling derives its utility and software engineering gains 

its relevance to the practice of parametric modelling.

This thesis is somewhat unusual in that it chronicles what happens to a range 

of parametric models throughout a series of projects. These case studies show 

that design is not something an architect does with a ‘completed parametric 

model’, but rather something that happens iteratively throughout the 

parametric modelling process. They suggest a practice whereby the tool user 

and toolmaker are indistinguishable, and therefore capable of tuning the 

model’s assorted flexibilities to delay and explore some aspects of the design, 

while rebuilding sections of the model to accommodate others. There is a 

gap in our knowledge about how this process happens. While other forms of 

architectural representation have a rich history of critical enquiry to draw upon, 

my research indicates that software engineering may offer a similar foundation 

to the practice of parametric modelling. But doing so requires shifting our focus 

beyond toolmaking, beyond our infatuation with what parametric models do, 

and towards what is, for lack of a better term, parametric modelling.
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9	 Conclusion

In many ways the conclusion to this thesis is simple: 

software engineers creating computer programs and 

architects designing with parametric models share 

similar challenges, which can often be addressed with 

similar research methods and similar design practices.

But this simplicity can be hard to discern. Fifty years 

ago when Timothy Johnson dragged a pen across 

the flickering screen of Sketchpad, it looked like 

he was drawing. Today many would say Johnson 

was toolmaking, almost as if making a tee-square is 

somehow a precedent for weaving a parametric model 

from a network of explicit functions. However, unlike 

the tee-square, or any other prior form of design 

representation, parametric models merge making and 

using to the point of indistinguishability. This presents 

unfamiliar challenges to designers; challenges that 

have been causing setbacks on numerous architecture 

projects. These challenges resemble challenges faced 

in software engineering. My research suggests that 

such an association offers a proven pathway both for 

conducting parametric modelling research and for 

improving the practice of parametric modelling with 

aspects of the software engineering body of knowledge. 

Admittedly there is something counterintuitive to the 

notion that programmers can teach architects about 

contemporary design representation but, while it can 

be hard to discern, in some respects the contemporary 

practice of architecture has more in common with 

the software engineers of Silicon Valley than the 

sketchpads used by previous generations of architects.
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