
Modelled on Software Engineering:

Flexible Parametric Models in

the Practice of Architecture

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Daniel Davis (B. Arch)

School of Architecture and Design

College of Design and Social context

RMIT University

February 2013

i

I certify that except where due acknowledgement

has been made, the work is that of the author

alone; the work has not been submitted

previously, in whole or in part, to qualify for any

other academic award; the content of the thesis

is the result of work which has been carried out

since the official commencement date of the

approved research program; any editorial work,

paid or unpaid, carried out by a third party

is acknowledged; and, ethics procedures and

guidelines have been followed.

Daniel Davis

February 2013

iii

Abstract

In this thesis I consider the relationship between the design of software

and the design of flexible parametric models.

There is growing evidence that parametric models employed in practice

lack the flexibility to accommodate certain design changes. When a

designer attempts to change a model’s geometry (by modifying the model’s

underlying functions and parameters) they occasionally end up breaking

the model. The designer is then left with a dilemma: spend time building

a new model, or abandon the changes and revise the old model. Similar

dilemmas exist in software engineering. Despite these shared concerns,

Robert Woodbury (2010, 66) states that there is currently “little explicit

connection” between the practice of software engineering and the practice

of parametric modelling.

In this thesis I consider, using a reflective practice methodology,

how software engineering may inform parametric modelling. Across

three case studies I take aspects of the software engineering body of

knowledge (language paradigms; structured programming; and interactive

programming) and apply them to the design of parametric models for

the Sagrada Família, the Dermoid pavilion, and the Responsive Acoustic

Surface. In doing so I establish three new parametric modelling methods.

The contribution of this research is to show there are connections between

the practice of software engineering and the practice of parametric

modelling. These include the following:

•	 Shared challenges: Both practices involve unexpected changes

occurring within the rigid logic of computation.

•	 Shared research methods: Research methods from software

engineering apply to the study of parametric modelling.

•	 Shared practices: The software engineering body of knowledge

seems to offer a proven pathway for improving the practice of

parametric modelling.

These connections signal that software engineering is an underrepresented

and important precedent for architects using parametric models; a finding

that has implications for how parametric modelling is taught, how

parametric models are integrated with practice, and for how researchers

study and discuss parametric modelling.

iv

Acknowledgements

Back in 2008 I found myself in a bar with my friend Kurt Rehder. We were

talking about how my plans to spend the summer working in Melbourne

were unravelling (I still had not found a job even though I was scheduled to

travel there next week). I was explaining the start of the Global Financial

Crisis and a multitude of other crises, but Kurt was not interested. He

wanted to know who I most wanted to work with. I told him about Mark

Burry and the Spatial Information Architecture Laboratory (SIAL). Kurt

interrupted, “leave it with me.” Although Kurt spoke with the authority of

someone formally in the United States Navy, and although we had been at

the bar long enough for his suggestion to sound plausible, I was also aware

that Kurt knew no one in Melbourne and that I would need to invent a

more feasible plan in the morning.

I awoke hazy and resumed my fruitless search for a summer job. A few days

later a single-line email arrived, “Hi Daniel, We hear you are going to be in

Melbourne, can you start on Monday – Mark.”

Kurt never told me how he managed to get that email sent. I have often

thought about it in my four years at SIAL. I have often thought about Kurt’s

insistence on aspiring towards something even when it feels unachievable.

I have often thought about how small interactions can change the course

of our lives. And here I would like to acknowledge some of the many small

and large interactions with some of the people that have contributed to

the course of my research. Save for my family, these are all people I would

have never met had I not met Kurt in that bar back in 2008.

I am extremely grateful for Mark Burry and Jane Burry’s supervision

throughout my research. Together they have given me the latitude to

explore while also giving me the critical grounding to ensure that I did

not get too lost. In particular, Mark has been instrumental in facilitating

many of the case studies my research examines. His humorous stories of

parametric models failing in practice prompted much of this research.

Jane has taught me a great deal about mathematics and made a number

of important intellectual contributions to the project by quietly asking

crucial questions at exactly the right time. Mark and Jane, together with

v

John Frazer, were awarded the Australian Research Council Discovery

Grant for Challenging the Inflexibility of the Flexible Digital Model that has

funded my research.

A number of people at SIAL have helped shape my research, as collaborators

on projects, as guides through institutional bureaucracy, and as sounding

boards during chance meetings in corridors and formal presentations. In

particular I would like to thank Alexander Peña de Leon, Chin Koi Khoo,

Sascha Bohnenberger, Kamil Sharaidin, Nick Williams, Andrew Burrow,

Flora Salim, Brad Marmion, Nicola Narayan, Susu Nousala, Juliette Peers,

Margaret Woods, Dominik Holzer, Tim Schork, and Inger Mewburn. I

am also thankful to the people who have visited SIAL and critiqued my

thesis as part of RMIT’s Graduate Research Conference: Jeff Malpas, Terry

Cutler, Michael Ostwald, Anthony Burke, Jill Franz, Jules Moloney, Ken

Friedman, Margot Brereton, and Tom Daniell.

My thesis was examined by Sean Hanna and an individual who would

rather not be named. Their comments have been crucial in adding the

final polish and I am appreciative of the time they both invested in closely

reading this thesis.

Many of the projects in this thesis have taken place at Center for

Information Technology and Architecture (CITA) in the Royal Danish

Academy of Fine Arts. Mette Thomsen has generously welcomed me into

CITA where I have spent many enjoyable days working with Martin Tamke,

Brady Peters, Phil Ayres, Anders Deleuran, Aron Fidjeland, Stig Nielsen,

Morten Winter, Tore Banke, Jacob Riiber, and John Klein.

My friends have been extremely supportive. Together we have despaired

and joked, enjoyed meals and been on adventures. A number of them

have also read and edited my thesis. I would especially like to thank Kira

Randolph, Jordana Aamalia, Luke Feast, Byron Kinnaird, Rhys Williams,

Ross T. Smith, Agnes So, and Richard Maddock. And, of course, my family:

Lloyd Davis, Frances McCaffrey, and Kelsey Davis.

Finally, I would like to dedicate this thesis to Kurt Rehder (1969-2010).

vi

Contents

1	 Introduction. 1

1.1	 Problems with Flexibility	 3

1.2	 The Flexibility of Code	 6

1.3	 Aim	 8

1.4	 Methodology	 10

1.5	 Thesis Structure	 12

2	 The Challenges of Parametric Modelling. 14

2.1	 What is Parametric Modelling?	 15

2.2	 Why Use a Parametric Model?	 32

2.3	 Reported Difficulties with Models in Practice	 37

2.4	 Conclusion	 47

3	 The Design of Software Engineering 50

3.1	 The Software Crisis	 51

3.2	 The Software Engineering Body of Knowledge	 57

3.3	 Conclusion	 68

4	 Measuring Flexibility. 70

4.1	 Research Method	 70

4.2	 Research Instruments	 74

4.3	 Quantitative Flexibility	 75

4.4	 Qualitative Flexibility	 88

4.5	 Conclusion	 92

5	 Case A: Logic Programming. 94

5.1	 Introduction	 95

5.2	 Programming Paradigms	 99

5.3	 Challenges of Dataflow	 101

5.4	 Logic Programming	 103

5.5	 Logic Programming Parametric Relations	 106

5.6	 Application to the Sagrada Família	 110

5.7	 Analysis of Programming Paradigms	 113

5.8	 Conclusion	 117

vii

6	 Case B: Structured Programming. 120

6.1	 Introduction	 121

6.2	 Structured Programming	 126

6.3	 Architects Structuring Visual Programs	 130

6.4	 Understandability of Visual Programs in Architecture	 136

6.5	 Structured Programming in Practice	 142

6.6	 Sharing Modules Online	 149

6.7	 Conclusion	 152

7	 Case C: Interactive Programming. 154

7.1	 Introduction	 155

7.2	 The Normative Programming Process	 159

7.3	 The Interactive Programming Process	 161

7.4	 Interactive Visual Programming	 167

7.5	 Introducing Yeti	 168

7.6	 Benchmarking Yeti	 174

7.7	 Conclusion	 191

8	 Discussion: Beyond Toolmaking. 194

8.1	 Shared Challenges	 195

8.2	 Shared Methods	 197

8.3	 Shared Practices	 199

8.4	 Implications	 203

9	 Conclusion. 212

10	 Bibliography. 214

10.1	 Published During Study	 215

10.2	 Works Cited	 217

10.3	 Illustration Credits	 232

1

1	 Introduction

Timothy Johnson (fig. 1; Lincoln Laboratory 1964) drags a pen across a

flickering screen and, for a brief instance, it looks as though he is drawing.

For most people in 1964, this demonstration of Ivan Sutherland’s (1963)

Sketchpad will be the first time they have seen someone interact with a

computer. Johnson’s actions initially resemble a designer at a drawing

board, the ink replaced with light, the impression of the computer’s

similarity to the drawing board only broken when Johnson creates a

misshapen trapezium (fig. 2) and defiantly states “I shouldn’t be required

to draw the exact shape to begin with” (Lincoln Laboratory 1964, 9:00).

He then obscures the screen by reaching for a button to his left (fig. 3).

When Johnson sits back down he reveals, with a hint of magic, that the

trapezium has transformed into a rectangle (fig. 4). The sleight of hand

underlying this trick is that when Johnson appears to be drawing he is

actually communicating a set of geometric relationships to the computer.

These relationships form a specific type of computer program, known

today as a parametric model. Changes to the model or to its input variables

propagate through explicit functions in the computer to change the model’s

output automatically, which allows trapeziums to transform into squares,

and allows designers to begin drawing before they know the exact shape.

Figure 1: In a frame
from the Lincoln
Laboratory (1964)
documentary, Timothy
Johnson draws a line
with Sketchpad’s
light-pen.

2

Figure 2: A trapezium
drawn in Sketchpad.

Figure 3: Timothy
Johnson reaches for
a button (off camera)
to invoke Sketchpad’s
parametric engine.

Figure 4: The model’s
explicit functions create
orthogonal angles
between the trapezium’s
sides, transforming it
into a rectangle.

3

When Sutherland created Sketchpad, it was optimistic to think designers

would gain flexibility by transforming a job a draftsperson did with a

sheet of paper into a job a software engineer (Timothy Johnson) did with

a computer large enough to require its own roof (the TX-2). Yet, fifty years

later, architects sit at computers and increasingly do exactly what Johnson

was doing all those years ago. It is a difficult job. I will reveal in this thesis

that while parametric models offer the flexibility to accommodate change,

there is a tendency for changes to break parametric models unexpectedly.

These problems resemble problems software engineers encounter when

programming; problems that have led designers as far back as 1993 to

declare that parametric modelling is “more similar to programming than

to conventional design” (Weisberg 2008, 16.12). Yet despite the shared

concerns with accommodating changes, there is currently, according to

Robert Woodbury (2010, 66), “little explicit connection” between the

practice of parametric modelling and the practice of software engineering.

Johnson’s sleight of hand persists. In this thesis I seek to connect these

two practices by considering whether parametric models can be made more

flexible through the application of knowledge from software engineering.

1.1	 Problems with Flexibility

Design is a journey traced by ever changing representations. “The designer

sets off,” Nigel Cross (2006, 8) argues, “to explore, to discover something

new, rather than to return with yet another example of the already

familiar.” Many others share Cross’s view that design is not simply a leap

into a premeditated solution but rather a messy journey necessitated by

uncertainty and characterised by iteration (Schön 1983; Lawson 2005;

Brown 2009). Key facilitators of this process are external representations,

which serve as points of reflection along the way (Schön 1983).

Cross (2011, 12) contends that these representations are necessary since

“designing, it seems, is difficult to conduct by purely internal mental

processes.” Yet representations take time to produce, and they take time

to modify. Thus, as change inevitably occurs whist designing, the designer

necessarily spends time changing or creating new representations.

4

From the very beginning, the digitisation of architecture has concerned

itself with facilitating changes to design representations. When Sutherland

created Sketchpad, he spent considerable time considering how a “change

of a [model’s] critical part will automatically result in appropriate changes

to related parts” (Sutherland 1963, 22). In today’s lexicon this could be

described as parametric, meaning the geometry (the related part) is an

explicit function of a set of parameters (the critical part). As Johnson

demonstrated, a designer using Sketchpad could change their mind

about the relationship between objects (the critical part) and Sketchpad

would automatically adapt the objects (the related parts) to satisfy this

relationship. For example, a designer might decide that two sides of

trapezium should be orthogonal (as Johnson does in figure 2). The designer

then modifies the parameter controlling line relationships, and this

change filters through the explicit functions in Sketchpad’s parametric

engine to trigger the automatic remodelling of the lines so that they meet

orthogonally; the trapezium now a square. By making geometric models

seemingly easy to change, Sketchpad and the introduction of computer-

aided design promised to reduce the hours designers spent manually

changing or creating new representations.

It is now almost fifty years after Sketchpad and computers have replaced

the drawing boards they once imitated. Many new ways of generating

parametric models have been developed: from history-based modellers

(CATIA, SolidWorks, and Pro/Engineer), to visual scripts (Grasshopper,

GenerativeComponents, and Houdini) and textual programming

environments (the scripting interfaces to most CAD programs).

The commonality of all these parametric modelling environments is the

ability for designers to modify parameters and relationships that trigger

the transformation of related model parts. This is now a popular way to

create and modify digital models. Fifty years since Sketchpad, Robert

Aish and Robert Woodbury (2005, 151) say the hope still remains that

parametric modelling will “reduce the time and effort required for change

and reuse.”

5

While it is alluring to think of a design representation flexible enough

to reduce time spent remodelling, the reality – a reality commonly not

addressed – is that parametric models are often quite brittle. Frequently

I find my models have grown so tangled they can no longer accommodate

even the most trivial change. Often I just start again. I am not alone

in experiencing this: I see my students work themselves into the same

situation, I listen to colleagues complain about their models breaking, and

I read firsthand accounts from architects detailing the same problem.

When the topology of a project changes the [parametric] model

generally needs to be remade.

David Gerber 2007, 205

A designer might say I want to move and twist this wall, but you did

not foresee that move and there is no parameter to accommodate the

change. It then unravels your [parametric model]. Many times you will

have to start all over again.

Rick Smith 2007, 2

To edit the relational graph or remodel completely is also commonplace.

Jane Burry 2007, 622

Changes required by the design team were of such a disruptive nature

that the parametric model schema could not cope with them. [They

had to rebuild part of the model.]

Dominik Holzer, Richard Hough, and Mark Burry 2007, 639

[Parametric modelling] may require additional effort, may increase

complexity of local design decisions and increases the number of items

to which attention must be paid in task completion.

Robert Aish and Robert Woodbury 2005, 151

[If a critical change is made] there is no solution other than to

completely disassemble the model and restart at the critical decision.

Mark Burry 1996, 78

6

These authors collectively demonstrate that parametric models used in

practice have a propensity for inflexibility, which sometimes leads the

model to break (these quotes and their implications are examined further

in chapter 2). Often the only way forward is rebuilding the brittle part of

the model. In the best case, this causes an unexpected delay to the project.

In the worst case, the designer is dissuaded from making the change

and ends up with a design that was not so much created in a parametric

model as it was created for the limitations of a parametric model. Despite

fifty years of refinement and the increased adoption of parametric

modelling, inflexible models still cause delays in architectural practice,

hinder collaboration, and discourage designers from making changes to

their models.

1.2	 The Flexibility of Code

In The Design of Design the Turing award-winning software engineer,

Frederick Brooks (2010), frequently cites Schön and Cross as he positions

programming as a design discipline. Brooks argues that programming, like

other forms of design, is not simply a leap into a premeditated solution

but rather a messy journey necessitated by uncertainty and characterised

by iteration. During this process software engineers represent ideas with

computer code, which primarily contains relationships expressed in a

logical syntax. As these networks of relationships develop during the

design process, they can become brittle and unexpectedly break. These

moments of inflexibility echo moments of inflexibility exhibited by some

parametric models. For a period in the 1960s, scientists feared these

brittle breakages would be insurmountable and the limits of computation

would not be computer speed but rather the cognition of the programmers

creating and maintaining software (Naur and Randell 1968, chap. 7.1).

Software engineers still struggle with inflexibility. While it is difficult to

get precise data, some industry surveys have suggested only 14% to 42% of

software projects were successful in 2012 (The Standish Group 2012; The

Standish Group 2009; Eveleens and Verhoef 2010). In a discipline where

the “costs of materials and fabrication are nil,” Young and Faulk (2010, 439)

argue that the primary determinants of a programmer’s success become

“the essential challenges of complexity and the cost of design.” Accordingly,

the Software Engineering Body of Knowledge Version 1.0 (Hilburn et al. 1999)

7

– which categorises the expected knowledge of a programmer – is filled

with management strategies, algorithms and data structures, problem

decomposition tactics, programming paradigms, and coding interfaces to

reduce both the complexity and the cost of design. This is the cumulative

wisdom from years of struggles with inflexibility and these are the issues

programmers talk about.

In contrast, architects are told by Mark Gage (2011, 1), the assistant dean

at the Yale School of Architecture, to “use computation, but stop fucking

talking about it.” Gage (2011, 1) goes on to parody the way architects talk,

justifying computational projects as coming from “secret code found in

the lost book of the Bible handed to [them by their] Merovingian great

grandmother” (2011, 1) or deriving from “a semester producing the

most intricate parametric network ever seen by man” (2011, 1). While

there is obviously an element of truth to Gage’s polemic caricature, it

does not necessarily support his conclusion that architects should stop

talking about computation. Robert Woodbury (2010, 66) has pointed

out, “parametric modelers do have common cause with professional

programmers” but “there is little explicit connection between them.”

From this point of view, the problem is not so much that architects are

talking about computation, but rather that architects are typically talking

about computation in fairly extraneous terms compared to the exchanges

characteristic of software engineers.

In this thesis I explore whether the debates surrounding the design of

software are applicable to the design of flexible parametric models.

I position change as an essential, desirable, and unavoidable aspect of both

software design and parametric design – a quality both disciplines stiffly

embrace in their practice. The relationship between the two disciplines is

traversed in my research through three case studies, which take methods

inspired from software engineering and apply them to the creation of

parametric models. These three case studies map a new territory for

architects; territory that concerns the way parametric models themselves

are structured and considers what architects can learn from software

engineers to improve the flexibility of their parametric models in the

face of change.

8

1.3	 Aim

The aim of this research is to explore whether the design of software can inform

the design of flexible parametric models.

In addressing this aim, my thesis occupies what Woodbury (2010, 66) has

identified as the “common ground” between programming and parametric

modelling, a space where currently “little explicit connection” exists

between either side. In this thesis I consider how practices from software

engineering may connect with practices of parametric modelling, which I

do by applying software engineering concepts to the creation of parametric

models. In chapter 3 I discuss which software engineering concepts may

also be applicable to the practice of parametric modelling. I then select

three of these concepts and apply them respectively to three parametric

architecture projects in chapters 5, 6, & 7. The concluding chapters

(chap. 8 & 9) bring these case studies together to consider how the design

of software may inform the design of flexible parametric models and to

consider the consequences of this relationship for architecture generally.

A limit of my aim is that it explores just one type of flexible digital

modelling: parametric modelling. Not all architects use parametric models

and for those that do, parametric modelling is but one technique in an

array of modelling methods available to them. Flexibility may also be

achieved through other methods like Building Information Modelling

(BIM). The many advocates of BIM contend that BIM reduces rework

(which creates flexibility) by creating a centralised repository of data that

all representations draw upon; change the data once and theoretically

everything updates (Eastman et al. 2011, 15-26). My research focuses

on parametric modelling due to my experience with it and due to the

opportunities for improvement this presents. However focusing solely

on parametric modelling is not intended to be antagonistic to the other

modelling methods. On the contrary, since architects often integrate

modelling methods together, improvements to the practice of parametric

modelling could manifest themselves as improved parametric features for

other flexible representations like BIM.

9

A Note on Language

Within this aim, and throughout this thesis, I frequently use the terms

parametric model and software engineering. Both are contentious. To help

clarify my intended meaning I will briefly pause here and explain why I

have included these terms.

Architects assign a range of meanings to the phrase parametric model.

A number of definitions have been advanced that range from style-

based classifications, to software zealotism, to arguing that all design is

inherently parametric. Neil Leach claims that the disagreement is so fierce

“few people in the West working at the forefront of computation use the

term parametric” (Leach and Schumacher 2012). I however have chosen to

use parametric in this thesis because parametric has a very precise historic

meaning. The range of contemporary definitions are an illustration of how

the modern conception of parametric modelling has shifted. I explore these

shifts further in chapter 2. In the same chapter I explain the definition I

use in this thesis: a parametric model is set of equations that express a

geometric model as explicit functions of a number of parameters.

“The phrase software engineering was deliberately chosen as being

provocative” write the authors who coined the term at the 1968 meeting

of the NATO science committee (Naur and Randell 1968, 13). The original

intention was to ground the practice of manufacturing software in a

theoretical foundation similar to other engineering disciplines (Naur

and Randell 1968, 13). Many have since argued that engineering is an

inappropriate discipline to base the identity of programming upon. This

has led Tom DeMarco (2009, 95) to declare “software engineering is an

idea whose time has come and gone.” Others have said the manufacture

of software is more like a design discipline (Brooks 2010), or a craft (Seibel

2009), or an art (Knuth 1968). It lies outside the scope of my research to

resolve this forty-year old debate. In this thesis I use the phrase software

engineering not because it is an apt analogy for what programmers do but

rather because software engineering is a term still a widely used to denote

the body of knowledge concerning the creation of software.

10

1.4	 Methodology

Previous research indicates there are methodological challenges in

developing a convincing understanding of flexible parametric model design.

When software engineers have sought similar understandings of software

design, the researchers have shown a tendency to seek elegant, repeatable,

statistical studies – perhaps owing to the mathematical and scientific

origins of computer science (Menzies and Shull 2010, 3). Achieving

this elegance, repeatability, and statistical confidence often requires the

simplification of complicated circumstances. Turing award-winner Edsger

Dijkstra (1970, 1) has stated that these simplifications inevitably lead

computer scientists to conclude with the assumption: “when faced with a

program a thousand times as large, you compose it in the same way.” For

certain problems this extrapolation works, but on problems concerning

software flexibility and maintainability, Dijkstra (1970, 7) argues idealised

experiments fail to capture the paramount issues of “complexity, of

magnitude and avoiding its bastard chaos.” In other words, simplifying,

controlling, and isolating the issues of practice with a positivist or

post-positivist perspective may generate convincing empirical evidence

for software engineering researchers, but there is reason to suspect the

simplifications will also abstract away the crucial parts of what needs to

be observed to produce convincing evidence for practitioners.

With complicated interrelationships and the pressures of practice likely to

be important components of this research, a primary consideration is how

to avoid obscuring the nuances of practice whilst observing it. One method

is to conduct the investigation from within practice, a method Schön (1983)

describes as reflection in action and reflection on action. This method has a

constructivist worldview where, according to Creswell and Clark (2007, 24),

multiple observations taken from multiple perspectives build inductively

towards “patterns, theories, and generalizations.” While this may be closer

to social science than the hard science origins of software engineering,

Andrew Ko (2010, 60) argues such an approach is “useful in any setting

where you don’t know the entire universe of possible answers to a question.

And in software engineering, when is that not the case?” The challenges of

understanding practice therefore becomes one of generalising results that

are not necessarily representative because they are based on observations

of projects that cannot be simplified, controlled, and isolated. To help

11

mitigate these challenges my research draws upon multiple research

instruments to make the observations, and multiple case studies to

triangulate the results.

1.	 Multiple case studies: By employing multiple case studies, the

anomalies of one can be balanced by the rest. Robert Stake (2005, 446)

calls this a “collective case study” where multiple projects “are chosen

because it is believed that understanding them will lead to better

understanding, and perhaps better theorising, about a still larger

collection of cases.” Chapter 4 discusses in greater detail the criteria

for selecting the three case studies.

2.	 Multiple research instruments: A research instrument, as defined by

David Evan and Paul Gruba (2002, 85), is any technique a “scientist

might use to carry out their ‘own work’.” Typical examples include

interviews, observations, and surveys. Unfortunately there is no

research instrument to measure parametric flexibility. Chapter 4

investigates how various qualitative and quantitative research

instruments, many borrowed from software engineering, can

aid observations of parametric flexibility. These are combined in

various ways within the case studies to present a fuller picture of the

various projects.

Whilst this triangulation of observations through a mix of research

instruments is not as precise as a controlled experiment, it does aid

in observing the influence of actions undertaken in the midst of large,

messy, and complicated practice based projects – the situations where the

flexibility of parametric models is critical.

I should also note (prior to discussing the thesis structure) that the chapter

sequence in this thesis does not trace how I conducted the research. As

a work of reflective practice I gathered the evidence of my research in a

process resembling Kemmis and McTaggart’s (1982) cycle of “planning,

acting, observing and reflecting” on actions in practice. In this sense

my thesis represents a final extended reflection on my prior cycles of

research. I use three of these cycles as case studies but there are also many

incomplete and tangential cycles that are left unstated. As such, my thesis

structure does not mirror my research process, and instead it follows a

logic intended to contextualise the case studies in order to reflect upon the

relationship between software engineering and parametric model design.

12

1.5	 Thesis Structure

This thesis is divided into nine chapters: the current introduction,

three background chapters, three case study chapters, and two

concluding chapters.

In the following chapter (chap. 2) I expand upon the challenges associated

with parametric modelling that I have outlined in this introduction. I first

examine the various definitions of parametric modelling and consider

how these frame an understanding of what a parametric model is. I go

on to reveal the numerous challenges architects have faced when using

parametric models in practice. Aggregated together, these accounts reveal

an array of problems that tend to be overlooked in many of the discussions

around parametric modelling.

In chapter 3 I contrast the challenges of parametric modelling to the

challenges associated with software engineering. I introduce the body of

knowledge associated with software engineering and hypothesise about

which knowledge areas may also help the practice of parametric modelling.

In chapter 4 I discuss a research method for applying aspects of the

software engineering body of knowledge to the creation of various

parametric models. I outline criteria for selecting the case studies and I

discuss how a variety of quantitative and qualitative metrics can be used

to observe parametric flexibility.

Each of the subsequent three chapters is a case study that takes an area

of knowledge identified in chapter 3 and observes impact on parametric

modelling with techniques from chapter 4.

In chapter 5 I explore the differences between creating a parametric model

with a logic programming paradigm compared to creating a model with a

more conventional dataflow paradigm. The logic programming paradigm

enables the reversal of the parametric process by turning static geometry

into a parametric model. However, outside this niche application, logic

programming proves to be a difficult modelling interface.

13

In chapter 6 I consider how the principles of structured programming apply

to the organisation of parametric models. Splitting models into hierarchies

of modules appears to increase the legibility of the models and improve

model reuse. Perhaps more importantly, the structure seemed to allow

ordinarily pivotal decisions to be made much later in the design process

– in some cases, moments prior to construction.

In chapter 7 I draw upon innovations in software engineering Integrated

Development Environments (IDEs) to create an interactive programming

interface for architects. The interface enables designers to modify their

code and immediately see the geometry of the model change. This case

study positions the scripting environment itself as a important site of

innovation, a site where many programmers have already provided

numerous useful innovations.

These three chapters feed into the discussion (chap. 8) and conclusion

(chap. 9). I argue there is a close relationship between software engineering

and parametric modelling. This relationship has implications for how

parametric modelling is taught, for how parametric modelling is integrated

in practice, and for how we discuss parametric modelling.

14

2	 The Challenges
of Parametric
Modelling

Neil Leach observes that “many people have misgivings about the term

parametric” (Leach and Schumacher 2012). Whilst writing this thesis I

contemplated avoiding any controversy by replacing parametric with a

less disputed synonym: associative geometry, scripting, flexible modelling,

algorithmic design. I would not be the first author to shy away from a

term that others, like Patrik Schumacher (2010), have declared “war” over.1

These battles and misgivings surrounding the term parametric are relatively

recent. They signify, if nothing else, the growing importance of parametric

modelling within the discourse of architecture. For this reason I use the

term parametric throughout this thesis – not because I want to go to war,

but because the misgivings about the term parametric helps to explain the

misgivings of using parametric models.

Owen Hatherley (2010) argues that the debates surrounding parametric

modelling stem from a shift in definition. The term parametric was

co-opted, says Hatherley (2010), from its provenance in the “digital

underground” by “arrivistes” who have jostled to claim the term as

their own whilst parametric design ascended towards “mainstream

acceptance.” Hatherley cites Schumacher as an example of an arriviste,

owing to Schumacher’s (2008) infamous claim that parametric design is a

“contemporary architectural style that has achieved pervasive hegemony

within the contemporary architectural avant-garde.” Hatherley (2010) goes

on to quote my previous articles – where I have argued that parametric

design is not defined by an architectural style (Davis 2010) – as “perhaps

the nearest proof that there really is an avant-garde [of parametric design]

although perhaps Schumacher has little to do with it.” I will make a similar

argument in this chapter by showing how the definition of parametric has

1	 Neil Leach claims that, as a result of the misgivings around the term parametric, “few
people in the West working at the forefront of computation use the term parametric
or parametricism, although it is still popular in China for some reason” (Leach and
Schumacher 2012).

15

shifted and, in doing so, obscured many of the challenges associated with

parametric modelling.

I begin this chapter by exploring the various definitions of parametric

modelling. I argue that there is a propensity to define parametric modelling

in terms of the model’s outputs even though the defining feature of a

parametric model is not the outputs but rather the need to construct and

maintain relationships associated with the model. I go on to explore why

architects are attracted to this seemingly unintuitive design process and

I investigate the difficulties architects encounter with using parametric

models. I argue that these difficulties are not necessarily obvious if

parametric modelling is only defined and understood in terms of the

model’s outputs. Accordingly, I spend most of this chapter discussing

the challenges of defining and using parametric models, both as a way to

position my research and as a way to highlight under-represented parts

of the discourse that are important in understanding why architects

sometimes find parametric modelling challenging.

2.1	 What is Parametric

Modelling?

“What is parametric modelling?” is the title that heads the second

chapter in Robert Woodbury’s (2010) book Elements of Parametric Design.

Woodbury dedicates twelve pages to the question, but instead of directly

answering the question he spends most of these pages explaining the

workings of forward-propagating parametric models. Woodbury’s most

forthright answer appears on the chapter’s first page (fig. 5): “parametric

modelling introduces fundamental change: ‘marks’, that is, parts of the

design, relate and change together in a coordinated way” (Woodbury

2010, 11). But Woodbury never pauses to explain how relating marks

together differs from the relationships found in a plethora of alternative

modelling methods, notably BIM. This is not to chastise Woodbury, for

Elements of Parametric Design is one of the seminal books on parametric

modelling, but this is to highlight the difficulty even experts have in

articulately answering basic questions like what is parametric modelling?

Figure 5: The eleventh
page from Robert
Woodbury’s (2010)
Elements of Parametric
Design. Woodbury asks
“what is parametric
modelling?” but never
quite gives the answer.

17

Figure 6: Stadium
designs by Luigi
Moretti from the 1960
Parametric Architecture
exhibition at the Twelfth
Milan Triennial. Each
stadium derives from
a parametric model
consisting of nineteen
parameters. Top: The
plans for stadium
version M and N showing
the “equi-desirability”
curves (Converso and
Bonatti 2006, 243)
Bottom: A model of
stadium N.

18

Defining what parametric modelling is and what makes it unique, is an

important first step towards identifying the idiosyncratic challenges

parametric models present. In the following pages I traverse a range of

definitions that various architects have put forward: from the historic

definition of parametric, through to the claims that all design is parametric,

and that either change, tooling, or parametricism defines parametric. In

doing so I make the case that many contemporary definitions tend to

privilege what parametric models do (in terms of model behaviour or

stylistic outcomes) but that it is how parametric models come to be (through

the construction and maintenance of relationships) that distinguishes

parametric modelling from other forms of architectural representation.

A Historic Definition

The term parametric originates in mathematics but there is debate as to

when designers initially began using the word. David Gerber (2007, 73),

in his doctoral thesis Parametric Practice, credits Maurice Ruiter for

first using the term in a paper from 1988 entitled Parametric Design.2

1988 was also the year Parametric Technology Corporation (founded by

mathematician Samuel Geisberg in 1985) released the first commercially

successful parametric modelling software, Pro/ENGINEER (Weisberg

2008, 16.5). But Robert Stiles (2006) argues that the real provenance of

parametric was a few decades earlier, in the 1940s’ writings of architect

Luigi Moretti (Bucci and Mulazzani 2000, 21). Moretti (1971, 207) wrote

extensively about “parametric architecture,” which he defines as the study

of architecture systems with the goal of “defining the relationships between

the dimensions dependent upon the various parameters.” Moretti uses the

design of a stadium as an example, explaining how the stadium’s form can

derive from nineteen parameters concerning things like viewing angles

and the economic cost of concrete (Moretti 1971, 207). Versions of a

parametric stadium designed by Moretti (fig. 6) were presented as part

of his Parametric Architecture exhibition at the Twelfth Milan Triennial

2	 Gerber claims Ruiter’s paper was published in Advances in Computer Graphics III (1988).
When I looked at this book, none of the papers were titled Parametric Design and none of
the papers were written by Ruiter (he was the editor not writer). As best I can tell, there
never was a paper titled Parametric Design produced in 1988. The first reference I can
find to Ruiter’s supposed paper is in the bibliography of Javier Monedero’s 1997 paper,
Parametric Design: A Review and Some Experiences. It is unclear why Monedero included
the seemingly incorrect citation since he never made reference to it in the text of his
paper. As an aside: the word parametric does appear four times in Advances in Computer
Graphics III – on pages 34, 218, 224, & 269 – which indicates that the use of parametric
in relation to design was not novel at the time.

19

in 1960 (Bucci and Mulazzani 2000, 114). In the five years following the

exhibition, between 1960 and 1965, Moretti designed the Watergate

Complex, which is “believed to be the first major construction job to make

significant use of computers” (Livingston 2002). The Watergate Complex

is now better known for the wiretapping scandal that took place there

and Moretti is “scarcely discussed” (Stiles 2006, 15) – even by the many

architects who today use computers to create parametric models in the

manner Moretti helped pioneer.

Moretti did not fear obscurity as much as he feared the incorrect use of

mathematical terms like parametric. He wrote to his friend Roisecco that

“inaccuracy [regarding mathematical terms] is, in truth, scarier than the

ignorance before [when architects knew of neither the terms nor Moretti]”

(Moretti 1971, 206). Parametric has a long history in mathematics and

the earliest examples I can find of parametric being used to describe three-

dimensional models comes almost one hundred years prior to Moretti’s

writings. One example is James Dana’s 1837 paper On the Drawing of

Figures of Crystals (other examples from the period include: Leslie 1821;

Earnshaw 1839).3 In the paper Dana explains the general steps for drawing

a range of crystals and provisions for variations using language laced with

parameters, variables, and ratios. For instance, in step eighteen Dana tells

the reader to inscribe a parametric plane on a prism:

If the plane to be introduced were 4P2 the parametric ratio of which

is 4:2:1, we should in the same manner mark off 4 parts of e, 2 of ē

and 1 of ë.

Dana 1837, 42

In this quote Dana is describing the parametric relationship between three

parameters of the plane (4:2:1) and the respective division of lines e, ē,

and ë. The rest of the twenty-page paper possesses similar statements that

explain how various parameters filter through long equations to affect the

3	 By searching for parametric in Google Ngrams (http://books.google.com/ngrams/) I
was able to find the earliest occurrences of parametric from the collection of books that
Google has scanned. While James Dana (1837) is one of the more compelling results,
other examples include: Samuel Earnshaw (1839, 102), who wrote about “hyperbolic
parametric surfaces” deformed by lines of force in a paper that gave rise to Earnshaw’s
theorem; and Sir John Leslie (1821, 390), who proved the self-similarity of catenary
curves using “parametric circles” in his book on geometric analysis. Google has scanned
only a limited collection of books so there may be even earlier examples that were not
returned in these searches. Nevertheless, Dana’s writings in 1837 significantly predate
any claims I have found in various histories of parametric design as to the first use of
the term parametric in relation to drawing.

Figure 7: Instances of
James Dana’s crystal
drawings. Above: Setting
up the coordinate system
(Dana 1837, 41). Below:
Impact of changing
the edge chamfer ratio
(Dana 1837, 43).

21

drawing of assorted crystals. Dana’s crystal equations resemble those that

would be used by architects 175 years later to develop parametric models

of buildings, engendering them with what Moretti (1957, 184) has called

(incidentally) a “crystalline splendour.”

Parametric is given no special significance in Dana’s writing. Dana does

not describe his drawings as parametric, nor does he claim, as Schumacher

(2009a, 15) later would, that designing with parametric equations “justifies

the enunciation of a new style in the sense of an epochal phenomenon.”

Rather, Dana uses parametric in its original mathematical sense, a

word given no more emphasis than other technical terms like parallel,

intersection, and plane.

When used by Dana in 1837, or by mathematicians today, parametric

signifies what the Concise Encyclopedia of Mathematics calls a “set of

equations that express a set of quantities as explicit functions of a number

of independent variables, known as ‘parameters’” (Weisstein 2003, 2150).4

This definition sets forth two critical criteria:

1.	 A parametric equation expresses “a set of quantities” with a number

of parameters5.

2.	 The outcomes (the set of quantities) are related to the parameters

through “explicit functions”6. This is an important point of contention

in later definitions since some contemporary architects suggest that

correlations constitute parametric relationships.

4	 This definition is consistent with definitions in other mathematical dictionaries and
encyclopedias. I have chosen to cite from the Concise Encyclopedia of Mathematics as the
editor, Eric Weisstein (who is also the chief editor of Wolfram Mathworld) is considered
an authoritative source.

5	 Parameter can have a number of meanings, even when used by mathematicians. The
grammarian James Kilpatrick (1984, 211-12) quotes a letter he received from R. E.
Shipley: “With no apparent rationale, nor even a hint of reasonable extension of its use
in mathematics, parameter has been manifestly bastardized, or worse yet, wordnapped
into having meanings of consideration, factor, variable, influence, interaction, amount,
measurement, quantity, quality, property, cause, effect, modification, alteration,
computation etc., etc. The word has come to be endowed with ‘multi-ambiguous non-
specificity’.” In the Concise Encyclopedia of Mathematics (Weisstein 2003, 2150), the term
parameter used in the context of a parametric equation means an “independent variable.”
That is, a variable whose value does not depend on any other part of the equation (the
prefix para- being Greek for beside or subsidiary).

6	 An explicit function is a function whose output value is given explicitly in terms of
independent variables. For example, the equation x∙x + y∙y = 1 is the implicit function
for a circle. The function is implicit since the outputs (x and y) are defined in terms of
one another. To make the function explicit, x and y have been defined in terms of an
independent variable. Thus, the explicit function of a circle becomes: x = cos(t), y = sin(t).
By a similar token, saying that ‘x is roughly twice as large as t’ is not an explicit function
since there is ambiguity regarding the exact relationship between the variables t and x
(the relationship is non-explicit).

22

These two formulae meet the criterion of a parametric equation.

Firstly, they express a set of quantities (in this case an x quantity and

a y quantity) in terms of a number of parameters (a, which controls the

shape of the curve; and t, which controls where along the curve the point

occurs). Secondly, the outcomes (x & y) are related to the parameters (a

& t) through explicit functions (there is no ambiguity in the relationships

between these variables). This is the origin of the term parametric: a set

of quantities expressed as an explicit function of a number of parameters.

All Design is Parametric

Since Dana’s (1837) parametric crystal drawings 175 years ago,

architects have gradually begun using both parametric models and the

term parametric.7 Early examples include Antoni Gaudí using a hanging

chain model to derive the form of Colònia Güell at the turn of the

twentieth-century8 (M. Burry 2011, 231) and Frei Otto similarly using

physical parametric models as a form finding technique beginning in the

1950s (Otto and Rasch 1996). Slightly after Moretti held his Parametric

Architecture exhibition in 1960 (Bucci and Mulazzani 2000, 114),

Ivan Sutherland (1963) created the first parametric software, Sketchpad.

However, it was not until Parametric Technology Corporation released

Pro/ENGINEER in 1988 that parametric modelling software became

commercially viable (Weisberg 2008, 16.10), and it took at least another

decade for parametric modelling software to be specifically designed for

architects. Today architects craft parametric models in a range of software

7	 I have elected not to write a complete history of parametric modelling since doing so
would not contribute significantly to the argument developed in the remainder of this
thesis. For those interested, I recommend Weisberg’s (2008) detailed account of early
CAD software and Gerber’s (2007) chapter on precedents to parametric practice.

8	 A hanging chain has at least four parameters: its length, its weight, and the two points
it is attached to. Left to hang under the force of gravity, the chain makes a curved shape.
This curve is an explicit function of the chain’s parameters with the added property that
when inverted the curve stands in pure compression. While there is no computer, the
hanging chain is a parametric model due to the presence of parameters that control a
shape derived from an explicit function (in this case calculated by gravity).

An example of a parametric equation is the formulae that define a catenary

curve:

23

environments: from history-based modellers9, to visual scripts10, physical

modelling11, and textual programming environments12.

While one could argue that architects have spent decades gradually

adopting parametric modelling, some have argued that architects have

always produced parametric models since all design, by definition, derives

from parameters. This claim has been put forward by several authors,

including David Gerber in his doctoral thesis on Parametric Practices where

he contends:

It must be stated that architectural design is inherently a

‘parametric’ process, and that the architect has always operated in a

‘parametric fashion’.

Gerber 2007, 54

The same argument has been made by Robert Aish and Robert Woodbury:

Parametric modelling is not new: building components have been

adapted to context for centuries.

Aish and Woodbury 2005, 152

In a similar vein, Mark Burry rhetorically asks whether the opposite is true,

whether non-parametric design exists:

‘Parametric design’ is tantamount to a sine qua non; what exactly is

non-parametric design?

M. Burry 2011, 18

Roland Hudson holds a similar opinion and opens his doctoral thesis,

Strategies for Parametric Design in Architecture, with the sentence:

This thesis begins with the assertion that all design is parametric.

Hudson 2010, 18

9	 History-based modellers track how the designer creates geometry, allowing the designer
to make changes later. Examples include: CATIA, SolidWorks, and Pro/Engineer.

10	 Visual scripts resemble flowcharts explaining how parameters generate geometry.
Designers can manipulate the script’s inputs or the script itself to change the model.
Examples include: Grasshopper, GenerativeComponents, and Houdini.

11	 Physical models like Gaudí’s hanging chain model and Frei Otto’s soap films use physical
properties to calculate forms based on a set of parameters.

12	 There are scripting interfaces included with most CAD programs. These allow designers
to setup parameters and a set of explicit functions that generate geometry and other
parametric outputs.

24

For each of these authors, the claim that ‘all design is parametric’ stems

from the observation that all design necessarily involves parameters like

budget, site, and material properties. While this is undoubtedly true, the

pivotal part of a parametric equation is not the presence of parameters but

rather that these parameters relate to outcomes through explicit functions.

This explicit connection does not exist for all the parameters involved in a

design project. Typically relationships between parameters and outcomes

are correlations; the budget has a noticeable affect on the design outcome

but normally the mechanism that links the budget to the outcome is – at

best – ambiguous. Therefore, by interpreting parametric to mean, literally,

design from parameters these authors downplay the importance of explicit

relationships to parametric modelling and instead base their definition of

parametric upon the observable interface to the model.

Change is Parametric

Another observable characteristic of a parametric model – besides the

presence of parameters – is that the geometry changes when the parameters

change. This leads some to claim that change is parametric. Chris Yessios,

the founder and CEO of the modelling software FormZ, summarises the

history of this interpretation:

Initially, a parametric definition was simply a mathematical formula

that required values to be substituted for a few parameters in order to

generate variations from within a family of entities. Today it is used to

imply that the entity once generated can easily be changed.

Yessios 2003, 263

Yessios (2003, 263) acknowledges the mathematical origins of parametric

modelling but also advances a definition couched in behavioural terms:

the trademark behaviour of a parametric model being that it “can easily be

changed.” Robert Woodbury (2010, 7) seems to advance a similar definition,

beginning Elements of Parametric Design with the two sentences: “Design is

change. Parametric modelling represents change.” This is followed shortly

thereafter with the claim, “parametric modelling introduces fundamental

change: ‘marks’, that is, parts of the design, relate and change together in

25

a coordinated way” (Woodbury 2010, 11).13 Robert Aish (2011, 23) has

similarly emphasised the importance of variation by saying a parametric

model “directly exposes the abstract idea of geometric ‘transformation’.”

Revit Technology Corporation14 used a similar definition in a greeting to

visitors of the Revit website:

Para.me.tric adj. Math. A quantity or constant whose value varies with

the circumstances of its application, as the radius line of a group of

concentric circles, which [sic] varies with the circle under consideration.

Revit Technology Corporation 2000b (emphasis theirs)

While Revit Technology Corporation claim that their definition comes from

mathematics, the definition in no way resembles the actual mathematical

definitions I cited earlier. Critically, their definition overlooks the role

of explicit functions in a parametric model, an oversight also present in

the various definitions given by Woodbury, Aish, and Yessios. In place of

explicit functions are notions that parametric models can be defined by the

variation they produce. Change is an easily identifiable characteristic of a

parametric model and one that many authors choose to define parametric

modelling by.

Defining parametric modelling in terms of change conjures Heraclitus’s

dictum ‘Nothing endures but change’. Although parametric models change,

so too does practically everything else in the world, except perhaps change

itself. Even explicit geometric models can commonly be changed through

rotation, or scaling, or moving a mesh vertex. And more specialised

representations, like BIM, are set up to ensure changes to the underlying

database also change the associated models. Thus, while parametric

models change, and while parametric models are celebrated for being able

to change, change is hardly a unique feature of parametric modelling. By

saying parametric modelling is change, the various authors once again

focus on what parametric models do, without considering the unique

qualities of how parametric models are created.

13	 Woodbury’s definition nods to Sutherland’s (1963, 22) explanation of Sketchpad’s
behaviour, “change of a model’s critical part will automatically result in appropriate
changes to related parts.” Of course, Sutherland was not explaining the meaning of
parametric but rather explaining Sketchpad to an audience who had never seen a person
interact with a computer.

14	 Revit Technology Corporation was founded by former employees of Parametric
Technology Corporation. Their initial ambition was to create the “first parametric
building modeler for architects and building design professionals” (RTC 2000a) although
since their acquisition by Autodesk in 2002 they have begun branding what they do as
Building Information Modelling (BIM).

26

Tooling is Parametric

Mark Burry (2011, 8) begins Scripting Cultures by saying, “we are moving

rapidly from an era of being aspiring expert users to one of being adept

digital toolmakers.” Many other prominent authors describe themselves

as toolmakers and claim that parametric models are a type of drawing

tool (examples in key books and doctoral theses include: Aranda and

Lasch 2005; M. Burry 2011; Fischer 2008; Gerber 2007; Hudson 2010;

Kilian 2006; Woodbury 2010; Shelden 2002). This toolmaking analogy

has been in use since at least 1983 when the then co-founder of Autodesk,

John Walker (1983), made the heady charge that their actions over the

coming year “will decide whether AutoCAD becomes synonymous with

‘drawing tool’.” In doing so Walker attempted to position AutoCAD

alongside analogue drawing tools like the tee-square and the drafting table,

a task he and his competitors were largely successful at. In recent years,

the term has been further catalysed by Benjamin Aranda and Chris Lasch’s

book Tooling where they explain seven basic parametric recipes for what

they call drawing tools.

Whether tooling is an appropriate descriptor for what architects do is a

question I will leave for the discussion at the end of this thesis. For now

I would like to pause and consider how tooling implies an answer to the

question what is parametric modelling?

The term tooling conveys a separation between maker and user; between

the nameless person who makes a tee-square and the designer that uses

the tool. Aranda and Lasch (2005, 9) reinforce this division, concluding

the introduction to Tooling by saying, “once this field [meaning the tool]

is defined as a flexible and open space, the job of designing begins.”

Aish (2001, 23) similarly divides the act of creating a tool and the job of

designing when he remarks: “Software developers do not design buildings.

Their role is to design the tools that other creative designers, architects

and engineers use to design buildings.” The implied division between

tool use and tool making is significant: it suggests the creation and the

use of a parametric model is temporally separated, and perhaps even

organisationally separated.

27

The implications of this separation are eloquently (if unintentionally)

captured by Roland Hudson (2010) in his thesis Strategies for Parametric

Design in Architecture. Hudson (2010) draws upon many of the same

authors quoted in this chapter, dividing them within his literature review

under the headings “creating the model” and “exploring the design space”

(fig. 8). This division continues as Hudson discusses six case studies of

projects employing parametric models, talking about each parametric

model exclusively under the heading “overview of the completed model,”

as if creating the parametric model is separate and less relevant than using

the model. Hudson (2010, 230-45) then concludes his research by saying

that parametric model creation and design investigation are two separate

activities. Hudson (2010, 245) says that a person using a parametric model

to design ends up “refining parameter values, problem descriptions and

the structure of the parametric model rather than suggesting substantial

changes”. Given the categorical division underlying Hudson’s research,

it is hard to see how he could conclude anything else; a researcher is not

going to see substantial changes if they only look at “overviews of the

completed model”.

Hudson’s reasoning is not abnormal. Definitions presented earlier – that all

design is parametric or that change is parametric – show how designers can

become fixated on what ‘completed’ parametric models do, often leaving

out details of how parametric models are created or changed. This bias

can create the impression of a separation between a parametric model’s

creation and use; a separation that privileges design exploration through

parameter manipulation and underplays the possibility of ongoing model

development; a separation that leads Hudson and many others to say

tooling is parametric.

Figure 8: A selection
from the contents of
Roland Hudson’s (2010)
thesis Strategies for
Parametric Design in
Architecture. Hudson’s
distinction between
creating and using a
parametric model comes
through in his thesis
structure: the literature
review is split between
alternating headings of
“creating the model” and
“exploring the design
space”; and each case
study evaluation focuses
on the “overview of
the completed model”
often without discussing
any aspect of the
model’s creation.

29

Parametricism is Parametric

When Owen Hatherley (2010) talks about arrivistes repurposing the term

parametric, Hatherley is really talking about Patrik Schumacher (director

of Zaha Hadid Architects). Parametric was adopted by Schumacher as a

call to arms in his newly declared “style war” (2010) first presented as

a “parametricist manifesto” (2008) based upon “parametric paradigma”

(2008) and dubbed “Parametricism” (2008) at 11th Venice Architecture

Biennale. Since then, the polemic has been refined and republished in

countless locations, always generating much discussion.

Parametricism is a knowingly provocative notion, claiming “post-

modernism and deconstructivism were mere transitional episodes”

(Schumacher 2010, 43) and that parametric design will be “the great new

style after modernism” (2010, 43). Schumacher (2009a, 16) identifies

parametricism with a set of “negative heuristics” like “avoid rigid geometric

primitives” and “avoid juxtaposition.” He counterbalances this with a set

of “positive heuristics” including “consider all forms to be parametrically

malleable” and “differentiate gradually (at varying rates)” (Schumacher

2009a, 16).

Schumacher (2009b) illustrates his parametricism heuristics almost

exclusively with Zaha Hadid projects. When I pressed Schumacher on

his lack references to other projects, Schumacher – who holds a PhD

in philosophy – said “I am a practicing architect before I am a theorist”

(Davis 2010). By this Schumacher does not mean that he constructs

parametric models as practicing architect. Schumacher never writes about

using a parametric model and I can find no evidence that Schumacher

creates parametric models at Zaha Hadid. Rather, Schumacher’s practice

largely consists of reviewing what other architects have produced with

parametric models. Considering Schumacher’s perspective, it is somewhat

understandable that he would say “the emergence of a new epochal style

… is more important than methodological and procedural innovations via

specific computational techniques” (Leach and Schumacher 2012). After

all, it is the stylistic outputs that Schumacher sees, not the methodology or

procedure. In this sense Schumacher is not too far removed from the many

other theorists who also define parametric modelling in terms of what

the model does. In answering the question what is parametric modelling?

parametricism represents an extreme position, and a position many

30

architects like to distance themselves from, yet it is a position many others

come close to in their outcome focused definitions of parametric modelling.

Modelling versus Design

In contrast to Schumacher, my thesis focuses on the methodological

and procedural innovations required for parametric modelling instead

of focusing on enunciating the emergence of a new epochal style of

parametric design. The discourse surrounding parametric design (whether

parametric design is taken as a verb to describe the process of designing with

a parametric model, or as a noun to describe the outcomes of this process)

seems unlikely to reach a resolution in the near future, nor does it need to. I

will leave it for others to debate how parametric design fits into the broader

culture of architecture; for now there is a pressing need to understand

the technological challenges presented by parametric models. Finding

ways to make a parametric model more flexible may have ramifications in

terms of architectural design but the immediate ramifications will be for

the multitudes of architects currently using parametric models in their

practice. Thus, my research focuses almost entirely on parametric modelling

and leaves aside the debates surrounding the design implications.

What is a Parametric Model?

The definition of a parametric model, like a parametric model itself, has

an unsettled variability. At any particular time parametric may signify

all of design, or only the designs that change, or tooling, or design in

the style of parametricism. This collective disagreement exists even on

an individual level, with many prominent authors providing different

definitions across the span of their work (in the proceeding pages, I have

often been able to quote the same author under different definitions of

parametric). Unsurprisingly, architects like Patrik Schumacher have seized

this confusion as an opportunity claim the meaning of parametric, whilst

others have distanced themselves from the term altogether. At SIAL15

for instance, parametric models are often referred to as flexible models

(M. Burry 2011, 105), which is a description that emphasises – like most

15	 The Spatial Information Architecture Laboratory (SIAL) is a research unit within the
Royal Melbourne Institute of Technology (RMIT). My PhD is part of SIAL’s project
Challenging the Flexibility of the Inflexible Digital Model – a title that deliberately uses
flexible model instead of parametric model.

31

definitions of parametric – what the models do rather than how the models

were created.

The creation of the parametric model distinguishes it from other forms

of architectural representation. Returning to the Concise Encyclopedia

of Mathematics, a parametric equation is defined as a “set of equations

that express a set of quantities as explicit functions of a number of

independent variables, known as ‘parameters’” (Weisstein 2003, 2150).

The mathematical definition can be refined by recognising that the “set of

quantities” in the context of design representation is typically geometry

(although not always). Thus, a parametric model can be defined as: a set of

equations that express a geometric model as explicit functions of a number

of parameters. This is the intended meaning when nineteenth-century

scientists and mathematicians like James Dana (1837) refer to parts

of their geometric drawings as parametric. This is what mathematician

Samuel Geisberg (Teresko 1993, 28) meant when he founded Parametric

Technology Corporation and created the first commercially successful

parametric software. This is the definition used by Fabian Scheurer and

Hanno Stehling (2011, 75) as well as Ipek Dino (2012, 208-10). And when

Woodbury (2010, 11-22) describes the mechanics of a forward propagating

parametric model in his chapter “What is Parametric Modelling?” the

model he describes conforms to this definition. Therefore, a parametric

model is unique, not because it has parameters (all design, by definition,

has parameters), not because it changes (other design representations

change), not because it is a tool or a style of architecture, a parametric

model is unique not for what it does but rather for how it was created. A

parametric model is created by a designer explicitly stating how outcomes

derive from a set of parameters.

The explicit connection between parameters and the geometric model

potentially excludes a number of model types. Dino (2012, 209) has

argued linguistic algorithms (such as shape grammars) and biological

algorithms (such as genetic algorithms, flocking, and cellular automata)

tend not to be parametric because they lack explicit connections. While

these algorithms may contain parameters, their parameters work like a

budget in a brief; they undoubtably influence the outcome but there is no

explicit connection between a specific parameter and a specific outcome.

Yet the boundary between parametric and non-parametric is not clear

cut. For instance, Sketchpad (Sutherland 1963, 110-19) has two solving

32

methods: the one-pass method, which analytically solves the explicit

functions (Sutherland 1963, 118-19); and the relaxation method, which

bypasses the explicit functions through numeric optimisation. Sketchpad

seamlessly switches between the two solving methods and to an end user

they both appear parametric even though one relies upon explicit functions

while the other does not. Other fringe cases include BIM models where

changes to data may trigger a set of functions that recalculate a series of

models. Even explicit geometry has some parametric characteristics. For

instance, the endpoint of a line could be thought of as a parameter to a

set of functions that transform the line. While I am aware of these grey

areas, for the remainder of this thesis I will be discussing models that are

unambiguously parametric – models where the designer has defined the

explicit connections between parameters and the geometry. In the next

section I consider why a designer would want to do so.

2.2	 Why Use a

Parametric Model?

If you were to ask an architect to describe a medium for designing

architecture, one that fosters creativity and exploration, they would

probably not reply ‘a set of equations that express a geometric model as

explicit functions of a number of parameters’. Yet explicit functions and

parameters are the medium of choice for the many architects who design

with parametric models. Understanding why architects choose to use

parametric models – a seemingly counterintuitive medium for creativity

and exploration – is a crucial step towards understanding the challenges

associated with parametric modelling.

Thinking Parametrically

Expressing design intentions with parameters and explicit functions

requires a different way of thinking than most designers are accustomed to.

In addition to thinking about what they are designing, architects working

with parametric models must also think about the logical sequence of

formulas, parameters, and relationships that explain how to create their

designs (Aish 2005, 12; Woodbury 2010 24-25). Some dub this parametric

Cost of design changes
100%

0%

C
os

t &
 A

bi
lit

y
to

 c
ha

ng
e

Typical EffortIPD Effort

IPD Effort

Ability to impact cost

Predesign Schematic
Design

Design
Development

Documents Tendering Construction

Project Time

Cost of design changes
100%

0%

C
os

t &
 A

bi
lit

y
to

 c
ha

ng
e

Typical Effort

Ability to impact cost

Construction

Project Time

Iterative Parametric Prototyping

Figure 10: MacLeamy’s
curve (2001). MacLeamy
advocates taking the
typical design effort and
shifting it to an earlier
stage of the project. In
theory this means that
designers are working
when their decisions
have the most impact
and least associated cost.

Figure 9: Paulson’s
curve (1976, 588). In
the text accompanying
this graph, Paulson talks
about the benefits of
making early decisions
when the designer’s level
of influence is high.

34

Cost of design changes
100%

0%

C
os

t &
 A

bi
lit

y
to

 c
ha

ng
e

Typical EffortIPD Effort

IPD Effort

Ability to impact cost

Predesign Schematic
Design

Design
Development

Documents Tendering Construction

Project Time

Cost of design changes
100%

0%

C
os

t &
 A

bi
lit

y
to

 c
ha

ng
e

Typical Effort

Ability to impact cost

Construction

Project Time

Iterative Parametric Prototyping

thinking or algorithmic thinking. Learning to think parametrically is

“a hard-won skill, not acquired with ease” say all but one of forty experts

interviewed by Mark Burry (2011, 38). Although learning to design in

such a mediated manner can be difficult, the logical precision can also

be enjoyable for designers who relish pushing back against imposed

constraints, and for designers who like how parametric modelling

forces them to explicitly state (and therefore consider) every geometric

relationship (Aish 2005, 12; M. Burry 2011, 38-39; Kilian 2006, 300-03;

Woodbury 2010 24-25). However, the real benefit of learning to think

parametrically comes from the cost of design changes.

The Cost of Change

In 1976 Boyd Paulson sketched a graph (fig. 9) showing that a designer’s

level of influence over an architecture project decreases as the project

progresses. Paulson (1976, 588) points out that the first decision a designer

faces on any project – whether to commence the project or not – has total

influence over the project’s future. He goes on to argue that all subsequent

decisions have a diminishing influence and are generally more costly to

implement. In other words: as designs become more developed, they also

become more difficult to change. Paulson published his observations in a

few construction management textbooks (Barrie and Paulson 1991) but

the idea never became widely circulated.

Paulson’s graph reappeared in May 2001 at a resort in Mexico. The leaders

from HOK (one of the world’s largest architecture firms) had gathered at

the resort to discuss “key strategies for the future” (HOK 2012). During the

discussions, Patrick MacLeamy presented a graph (fig. 10) showing that a

designer has the most “ability to impact [a project’s] cost and functional

capabilities” (MacLeamy 2010) at the start a project, and that this ability

decreases during a project while the cost of making design changes

increases. The graph MacLeamy presented was identical to Paulson’s.

MacLeamy claimed the work as his own (perhaps unaware of Paulson’s

efforts) and HOK went on to promote Paulson’s graph under the name

MacLeamy’s curve (HOK 2012) – a name that has stuck thanks in part to

HOK’s marketing clout.16 Two years after MacLeamy presented the graph

16	 I am extremely grateful to Noel Carpenter for drawing my attention to Paulson’s work in
a comment Carpenter left on a blogpost I wrote about MacLeamy (Davis 2011a). As best

35

to the leaders of HOK, MacLeamy was appointed CEO, a position he has

held for almost a decade (HOK 2012).

As CEO of HOK and the international chair of buildingSMART17, MacLeamy

has used his curve to champion the front-loading of architecture projects.

MacLeamy (2010) advocates making design decisions early in the project

(shifting the design effort forward) since his curve shows that design

changes are less costly to make at the start of the project compared to the

end. Paulson (1976, 591-92) drew the same conclusions from his graph

and suggested construction knowledge should be injected earlier in the

design process. More sophisticated examples of front-loading are given by

MacLeamy (2010) who advocates both of the following: Integrated Project

Delivery (IPD), which contractually amalgamates all the project parties to

guide the design team towards viable solutions early in the project; and

BIM, which provides a central project database to improve communication

between team-members while also aiding early stage simulations and later

stage project documentation. These ideas have been widely disseminated

and MacLeamy’s conception of front-loading has informed contemporary

architectural practice in everything from the American Institute of

Architects (AIA 2007, 21-31) guidelines for IPD to the instruction manuals

for Autodesk’s Revit (Read, Vandezande, and Krygiel 2012, fig. 5.7).

Discussing the cost of change may make some designers uncomfortable,

particularly if they perceive their costly changes as valuable contributions

to a project. However, cost in this context is a measure of the designer’s

capacity to make change; the designer’s ability to design. Ostensibly, front-

loading should empower designers by encouraging them to act when the

cost of change is low and their capacity to make change is high. Yet, the

paradox of front-loading is that by forcing design decisions early in the

project, the project becomes more developed and therefore, according to

MacLeamy’s curve, more costly to change later on. It is this increase in

the cost of change that should make designers uncomfortable because it

signals a reduction in the designer’s capacity to make late changes.

I can tell, no previous research has cited Paulson when discussing MacLeamy’s curve.
17	 BuildingSMART is an influential consortium of CAD manufactures and users that

develops open standards for describing buildings. They are perhaps best known for the
development of the IFC standard, which facilitates interoperability in between BIM
software.

36

The introduction of parametric modelling was motivated by a desire

to decrease the cost of change. This motivation is discussed by Samuel

Geisberg, the founder of Parametric Technology Corporation, during an

interview with Industry Week in 1993:

The goal is to create a system that would be flexible enough to

encourage the engineer to easily consider a variety of designs. And

the cost of making design changes ought to be as close to zero as

possible. In addition, the traditional CAD/CAM software of the time

unrealistically restricted low-cost changes to only the very front end

of the design-engineering process.

Geisberg quoted in: Teresko 1993, 28

Geisberg’s comments suggest that instead of looking at MacLeamy’s cost

of change curve and concluding design efforts should be shifted to the

“very front end of the design-engineering process,” a better conclusion

may be to shift the cost of change curve so that the “cost of making design

changes [is] as close to zero as possible.” In theory, a parametric model

helps lower the cost of change provided the model’s parameters and explicit

functions require less effort to change than alternative modelling methods.

Geisberg calls this flexibility (Teresko 1993, 28). In chapter 4 I discuss the

various nuances of flexibility, but for now flexibility can be understood as

a measure of the cost of design changes and, by proxy, a component of the

designer’s capacity to design.

Flexibility makes-up the central tenet of parametric modelling.

By maintaining a flexible model the designer can afford to make changes,

which is important given the inevitability of change on an architecture

project. While some changes can be anticipated and perhaps even front-

loaded, many changes come from forces outside the designer’s sphere of

influence. For instance, the client can change the brief, politicians can

change the legislation, and market forces can change the price of materials.

Other changes occur because design is a knowledge generating process.

Often it is only through iteration, exploration, and reflection that the

problem – much less the design response – becomes known (Glegg 1969;

Schön 1983; Lawson 2005; Cross 2006). In the face of these inevitable

changes, the flexibility of a parametric model’s parameters and explicit

functions makes for an alluring design medium; one many architects

employ to help improve the designer’s capacity to design.

37

2.3	 Reported Difficulties with

Models in Practice

While the flexibility of a parametric model purportedly helps designers

accommodate change, there is growing evidence that this is not always

the case. “Many times,” writes Rick Smith (2007, 2), architects working

with parametric models are finding they have to “start all over again” once

changes incapacitate their models. Parametric Technology Corporation

(PTC 2008, 1) admit “this situation is fairly common” with users often

finding that they spend “too much time re-creating designs, or can’t

respond to unexpected changes fast enough, or [that their] design cycles

are actually taking longer [compared to using a non-parametric model]”

(2008, 1). A similar sentiment is expressed by the authors quoted at the

very start of this thesis (Gerber 2007, 205; J. Burry 2007, 622; Holzer et al.

2007, 639; Aish and Woodbury 2005, 151; M. Burry 1996, 78). In the

following section I revisit what these authors say about the practice of

parametric modelling and investigate the associated challenges they reveal.

Evidence of Challenges

Very few architects have spoken publicly about how they construct and

maintain their parametric models; fewer still in a critical manner. This

is not entirely surprising considering the relatively recent adoption of

parametric modelling by most architects. Only in the past decade have

the challenges of computational power, workflows, and algorithms receded

to the point where parametric modelling has gone from an issue largely of

theory to the subject of practice.

When architects do write about the practice parametric modelling there is

a tendency to understate the challenges. As Thomas Fischer (2008, 245)

laments, firsthand accounts of “failures and dead-ends … seem to be rare

and overshadowed by the great number of post-rationalised, outcome-

focused reports on digital design toolmaking.” This observation ties into

the point made earlier in this chapter: architects are inclined to focus more

on what parametric models do than how the models come to be. From this

perspective, the failures and dead-ends can be hard to see. But through

38

the veneer of architects talking positively about the outcomes of projects

they were personally involved in, there are fragments containing frank

admissions of the problems encountered. The handful of authors who

have written candidly about these challenges make up the bibliography

of this section.

The most explicit critique of parametric modelling comes in a short, six-

page paper entitled Technical Notes from experiences and studies in using

Parametric and BIM architectural software (Smith 2007). The paper is not

peer reviewed, has not been published, and lists only one source. Ordinarily

such a paper could be dismissed as misattributed opinion, only, this paper

is written by Rick Smith.

Rick Smith played a large part in introducing parametric modelling to

the architecture industry. Smith began working as a CAD technician for

Lockheed in 1979 (Smith 2010), well before most architecture firms had

computers. By the start of the 1990s, Smith was designing parts for the

United States space shuttle with Dassault Systèmes’ CATIA (Smith 2010).

Based on Smith’s experience in the aerospace industry, Frank Gehry and

Associates hired Smith in 1991 to help design the Barcelona Fish using

CATIA – one of the first times software of this calibre was used in the

architecture industry. Smith ended up spending a decade consulting to

Gehry, employing parametric modelling on some of Gehry’s most prominent

projects, such as the Guggenheim Bilbao (1993-97), the Experience Music

Project (1995-00), and the Walt Disney Concert Hall (1992-03). The success

of this collaboration helped spawn the sister company Gehry Technology

(incorporated in 2001), which went on to develop the parametric modelling

software Digital Project (2004) – a modified version of CATIA intended for

architects. Given the decades Smith has spent helping pioneer parametric

modelling in the architecture industry, it is very significant for him to now

turn around and highlight the flaws.

39

Since 2007 Smith has announced the challenges associated with parametric

modelling in the short, six-page white-paper prominently displayed on

the website of his consultancy, Virtual Build Technologies. The white-

paper identifies five major shortcomings with parametric modelling

(Smith 2007, 2):

1.	 Parametric models require a degree of front-loading.

2.	 Anticipating flexibility can be difficult.

3.	 Major changes break parametric models.

4.	 Changes can be hard to see visually.

5.	 Reusing and sharing models is problematic.

Smith’s points seem to resonate with what other authors have written,

even if they do not write so emphatically. In the following section I take

in turn each of Smiths five critiques and consider whether evidence from

peer-reviewed authors corroborates his self-published opinions.

One: Front-loading

When you model using parametrics you are programming following

similar logic and procedural steps as you would in software

programming. You first have to conceptualize what it is you’re going

to model in advance and its logic. You then program, debug and test

all the possible ramifications where the parametric program might fail.

In doing so you may over constrain or find that you need to adjust the

program or begin programming all over again because you have taken

the wrong approach.

Smith 2007, 2

In Smith’s first critique of parametric modelling, he points out that

creating a parametric model requires some degree of upfront planning.

This is reiterated by Weisberg (2008, 16.12) who recalls that even in

1993 designers creating parametric models in Pro/ENGINEER needed to

“carefully plan the design, defining ahead of time which major elements

would be dependent upon other elements.” Planning is a necessary

component of parametric modelling because the logical rigidity of a

model’s explicit functions requires that the designer anticipate, to some

degree, the parameters of the model and the hierarchy of dependencies

between functions. This “prerationalization process is often found to be

40

arduous,” states Gerber (2007, 205), “as it requires a significant amount of

upfront cognitive investment.” While pre-rationalisation can be onerous,

the real difficulty of pre-rationalisation is not the upfront cognitive

investment but rather the risk that the designer may invest time on

“the wrong approach” (Smith 2007, 2). As Axel Kilian (2006, 54) warns,

“structuring the design approach early on in the design process … offers

little flexibility once a model has been created.” This is a similar problem to

MacLeamy’s front-loading: many changes in an architecture project cannot

be anticipated upfront, and decisions made too early in the project may

raise the subsequent cost of design changes since any major change will

undo all of the initial work. Aish and Woodbury (2005, 151) echo this

statement by acknowledging “parameterization may require additional

effort, may increase complexity of local design decisions and increase the

number of items to which attention must be paid in task completion.” The

additional effort required to design using explicit functions necessitates

that designers have some notion of the design outcome prior to modelling.

This upfront planning can be challenging, particularly in a process as

notoriously hard to anticipate as the design process.

Two: Anticipating Flexibility

Once you think you have a working parametric model you may still

find you haven’t programmed a parameter of the geometry in a way

that is adjustable to a designer’s future request. A designer might say

I want to move and twist this wall, but you did not foresee that move

and there is no parameter to accommodate the change. It then unravels

your program. Many times you will have to start all over again. Imagine

trying to do this on a complex and fully integrated building.

Smith 2007, 2

Part of the upfront planning of a parametric model, according to Smith’s

second critique, involves anticipating future design changes. If changes

can be anticipated, the model can be structured with the appropriate

parameters to accommodate these changes. However, if a change is not

anticipated, the designer must accommodate the change by modifying

the model’s explicit functions. This process of “conceiving, arranging and

41

editing dependencies is the key parametric task” according to Woodbury

(2010, 25). As with the task of initially building the parametric model,

modifying the explicit functions can be challenging, particularly on

a “complex and fully integrated building” (Smith 2007, 2). A critical

endeavour of the designer is therefore to avoid unnecessarily rebuilding the

model by anticipating future changes and creating parametric models with

the flexibility to accommodate these anticipated changes from the start.

Given the importance of anticipating flexibility, a seemingly obvious

response is to make every aspect of a model flexible; add parameters for

every possible whimsy of the designer. But parameters come at a cost. They

require work upfront to implement, and they require even more work to

change. This investment may not pay off if the parameter is rarely used.

Therefore, the skill of anticipating flexibility is getting the balance right

between too much and too little flexibility. Fabian Scheurer and Hanno

Stehling share this sentiment:

The challenge of building a parametric model is to untangle the

interdependencies created by different requirements and find a set of

rules that is as simple as possible while remaining flexible enough to

accommodate every occurring case. In other words: to pinpoint the

view to the exact level of abstraction where no important point is lost

and no one gets distracted by unnecessary detail.

Scheurer and Stehling 2011, 75

Thus, an ideal parametric model encompasses all the variations the

designer wants to explore with the most concise set of parameters

possible. According to Jane Burry and Mark Burry (2006, 793) this

catches designers in a paradox: upfront they need to anticipate potential

changes to the model, yet they lack the knowledge to do so because it is

the “very variability of the model that uncovers potential ranges of [new]

possibilities that leads to design explorations.” The paradox of anticipating

flexibility presents a challenge for designers, one they must overcome to

avoid making major model changes.

42

Three: Major Changes

After all the time and effort of programming the geometry to where

you think you have it right, you may find you still have to start all over

again because the initial design concept has completely changed.

Smith 2007, 2

Smith’s third critique of parametric modelling is that major changes will

break even the most flexible parametric models. Ordinarily changes can

be accommodated either through modifying parameters or by modifying

the model’s explicit functions. However, an industry survey by the

Aberdeen Group (2007, i) of more than 150 firms (8% of which were

architecture firms) found that designers “often end up spending more

time fixing models than if they had simply started from scratch.” Weisberg

(2008, 16.12) noted similar behaviour in his observations of engineers,

concluding the difficulty of modifying a parametric model’s explicit

functions was such that “in extreme cases (and sometimes in cases that

were not particularly that extreme), the user was forced to totally recreate

the model.” In reality the designer is never forced since a designer always

has the option of not making a particular change. Although, admittedly,

there is little comfort in being asked to choose between either completely

rebuilding your parametric model or compromising your design intentions

to fit the limitations of an existing parametric model.

Architects tend to be unwilling to talk about the “failures and dead-ends”

(Fischer 2008, 245) that result in models being rebuilt. When they do, it

is often only in passing. For instance, David Gerber (2007, 205) mentions

that if the “topology of a project changes the [parametric] model generally

needs to be remade.” Yet apart from this single sentence, Gerber does

not dedicate any more space in his five hundred-page thesis to the fact

that models employed for their flexibility apparently fail if the topology

of the project changes – a seemingly critical detail for a thesis entitled

Parametric Practices. Slightly more depth can be found in various exposés

of the parametric modelling process. For example, Mark Burry (1996,

78) speaks to the issue of topological fragility when discussing the

design process for the triforium column of the Sagrada Família. Burry

initially built the parametric model from hyperbolic paraboloid geometry

but, during the subsequent design process, the design team decided to

test whether the column could instead be made from conoid geometry.

43

When Burry (1996, 78) tried to make this topological transformation,

he found himself in a situation where “there is no solution other than

to completely disassemble the model and restart at the critical decision.”

These struggles with topological transformations, particularly ones that

result in models being rebuilt, are especially acute for architects given the

relative lack of topological consistency in building forms when compared

to the typically homeomorphic forms of boats, planes, and cars dealt with

in other industries.

While topological transformations can be difficult, they are not the only

type of major change that causes models to be rebuilt. Dominik Holzer

et al. (2007) tells of how unanticipated changes can completely disrupt a

model, as happened on the model for AAMI Park stadium in Melbourne.

Holzer joined the project as a member of ARUP’s team assisting with the

structural calculations during the design development. By this stage of

the design process, many parts of the project were finalised and therefore

included as invariable geometry in the model. It was expected that the

design would become more resolved during the design development

process, however, the opposite happened: “the number of variable design

factors increased” (Holzer et al. 2007, 637). As more and more of the

original design intent was changed, and as the changes impacted parts of

the model initially assumed to be invariable, the changes became of “such

a disruptive nature that the parametric model schema could not cope with

them” and the “model consequently fell apart” (Holzer et al. 2007, 639).

Holzer had no choice but to rebuild the model. Changing a parametric

model is often so disruptive that Hudson (2010, 240) recommends “early

models should be treated as disposable and not precious.” Jane Burry

(2007, 622) also notes that it is commonplace when parametric modelling

to “return to the metaphorical drawing board to edit the relational graph

or remodel completely.” While Weisberg (2008, 16.12) observes designers

trying to avoid this by “planning their design work in order to avoid having

to start over if major changes were made to the design.” However, even

with the best front-loaded anticipation of changes, the inflexibility of

parametric models in the face of major changes often present the designer

with only one viable option: start over.

There will always be changes outside the designer’s control – to the

legislation, budget, and the client’s favourite colour. And since designers

learn through designing, there will always be changes that cannot be

44

anticipated prior to modelling. These changes are ordinarily accommodated

by modifying parameters or by modifying the model’s explicit functions.

However, if the change is large enough, or the topology unfamiliar enough,

this choice will diminish to just one option: rebuild the model. A decidedly

inflexible outcome.

Four: Change Blindness

Once you have your program working if anyone changes a parameter

it could affect the geometry somewhere in the design that you didn’t

want to be changed. This occurs often and the change may not be

detected until much later in the design phase, or even worse, in the

more expensive construction phase.

Smith 2007, 2

Designers often fail to observe changes in models, says Smith in his

fourth critique of parametric modelling. His claim is corroborated by

strong empirical evidence from numerous psychologists. Summarising

this existing research, Simons and Levin (1997, 261) note, “experiments

using a diverse range of methods and displays have produced strikingly

similar results: unless a change to a visual scene produces a localizable

change or transient at a specific position on the retina, generally, people

will not detect it.” This phenomenon is known as change blindness. A study

by Nasirova et al. (2011) of twenty participants using parametric models

found “change blindness did indeed occur … making change detection

for 3D parametric [modelling] highly challenging, slow and confusing”

(2011, 762; a similar point is made in: Erhan, Woodbury, and Salmasi

2009). A designer suffering from change blindness will essentially be unable

to see certain model changes, even though the changes are unobscured

on screen while the designer actively looks for them. On occasion the

designer will fail to see any changes at all. Phillips (1974) demonstrates

that this problem is exacerbated by the latency between seeing one

variation and seeing the other variation (which, in a parametric model, is

the time between making a change and seeing the result). The propensity

of designers to suffer from change blindness has two major implications

for the application of parametric modelling:

45

•	 Firstly, as Rich Smith warned, changes to a parametric model may

have undetected consequences. In chapter 7 I discuss a project

where inadvertent changes went undetected until they caused near

catastrophic problems during the construction phase.

•	 Secondly, if a designer is unable to identify what has changed between

two model variations, then they may struggle to make an informed

evaluation of design changes.

Five: Reuse and Sharing

This also points to the fact that any operator using the model needs

intimate knowledge of the parametric program that is written for that

specific design. This logic knowledge is not easily transferred with

the 3D model. In a sense the original programmer of the model then

becomes the owner of the model. Many times if the program is too

complex the original programmer is the only one who can work with it.

Smith 2007, 2

Smith’s final critique of parametric modelling is that parametric models are

difficult to reuse and share. Parametric Technology Corporation (PTC 2008,

3) acknowledge this problem and say “even after a model is created, other

designers can’t easily modify the design because they don’t possess the

knowledge about how it was created and the original design intent.” Yanni

Loukissas (2009) observes that because parametric models are difficult to

share, one architect within an organisation inevitably becomes the “keeper

of the geometry” – the person responsible for the parametric model by

virtu of being the only person capable of modifying the model. A similar

conclusion was drawn by the Aberdeen Group’s survey (2007, 3), which

identified the following “top four challenges to design reuse” (2007, 3):

1.	 Model modification requires expert CAD knowledge.

2.	 Models are inflexible and fail after changes.

3.	 Users cannot find models to reuse.

4.	 Only the original designer can change models successfully.

The first, second, and fourth item on this list are singled out by the

Aberdeen Group (2007, 3) “as testament to the fact that feature based

models [a synonym for parametric models] can be a barrier to design

46

reuse.” In many ways, these three points are just manifestations of Smith’s

third critique: major changes often break parametric models. After all, if

a designer breaks their own model trying to implement a change, then a

designer unfamiliar with the model is going to be in a far worse position

to adapt that model to a totally new circumstance. Research by Kolarić et

al. (2010) indicates that even simple tasks becomes cognitively demanding

when a parametric model is unfamiliar. Identifying a relationship in

a parametric model containing twelve objects took participants on

average ten seconds to complete, and they were wrong 20% of the time

(even though they had a 50% chance of randomly answering the yes/no

question correctly; Kolarić et al. 2010, 709-10). This is to say nothing of

the difficulty of identifying relationships in a much larger model or the

difficulty of modifying relationships once they are correctly found – two

tasks necessary for reuse and sharing.

The Challenges of Parametric Modelling

Rick Smith’s five critiques of parametric modelling are a subject absent

from much of the architectural discourse. However, dispersed through

the writings of architectural theorists, practicing architects, software

manufactures, and psychologists are pieces of evidence that strongly

support Smith’s five claims. Collating this fragmented evidence represents

a significant furthering in our understanding of parametric modelling.

Perhaps most notably, it demonstrates that parametric models used

in practice are often blindsided by the very thing they purportedly

accommodate: change.

Smith’s first three critiques (front-loading, anticipating flexibility,

and major changes breaking models) are really manifestations of the

same thing: the difficulty of expressing unsettled design intentions

with explicit functions. Given this difficulty, front-loading is frequently

necessary to orchestrate a parametric model’s explicit functions into an

appropriate hierarchy. Once in this hierarchy, the difficulty of changing the

relationships often prompts designers to try – somewhat in vain – to avoid

changes by anticipating them first. This is a situation that unfortunately

shifts the rhetoric around parametric modelling, from one of designers

embracing change, to one of designers eschewing change. To a lesser

extent, the challenges of working with explicit functions also contribute

47

to the problems with sharing models, since being unfamiliar with a model

only exacerbates the difficulties of changing the model. The only critique

from Smith not directly linked to fragility of explicit functions is change

blindness, which instead arises from difficulties all humans have in visually

observing and evaluating change.

Smith’s critiques show that architects are clearly facing challenges with

expressing design intentions using explicit functions, while also struggling

to observe design changes and to reuse models. These observations are

substantiated independent of the parametric modelling software used,

the design team composition, the stage parametric modelling is used

in a project, the types of changes asked for, and the design complexity.

While each of these circumstances may be singled out as a problem, Smith’s

critiques suggest that they are symptoms, or at least aggravations, of

problems common to all parametric models. These are problems largely

concerning explicit functions but they are not solely technological, they

concern the designer and they also concern the inherent unpredictability

of the design process. Smith’s critiques indicate that designers are often

finding themselves in situations where they cannot modify the model’s

explicit functions and the designer is left with two undesirable choices:

they can delay the project and rebuild the model, or they can avoid making

the change altogether.

2.4	 Conclusion

The difficulties of parametric modelling are set in motion by the struggles

to define it. The term parametric originates in mathematics where, since

at least the 1830s, mathematicians and scientists have used the term

in relation to various geometric representations. However, as architects

have adopted parametric modelling as a design medium, the definition

of parametric has become muddied. Now when architects use the term

parametric, they could mean all of design, or only the designs that change,

or tooling, or design in the style of parametricism. The disagreement

exists even on an individual level, with many prominent authors defining

parametric differently across the span of their work.

The commonality of these contended definitions is that they focus on

what parametric models do. To a certain extent this makes sense: it is,

48

after all, what parametric models do that makes them interesting to

architects. For architects, parametric models purportedly improve the

designer’s ability to make changes, thereby improving their capacity to

design. In theory a designer can modify a model’s parameters and see the

design change almost instantly. As such, parametric models have come to

be understood in terms of their outputs; a method for producing tools, or

making parametricism, or creating design representations that change in

relation to parameters. This focus on what parametric models do suggests

a separation between creating and doing, a separation that underplays the

significance of creating and maintaining a parametric model.

It is the construction and maintenance of the explicit relationships inside

a parametric model that distinguishes parametric modelling from other

forms of design representation. As such, I define a parametric model as

many mathematicians would: as a set of equations that express a geometric

model as explicit functions of a number of parameters. While arriving

at this definition has been a contribution of this chapter, the primary

contribution of this chapter has been to expose the difficulties associated

with using explicit functions to design. Learning to express uncertain design

outcomes with the computational logic of explicit functions is, for most

architects, a “hard-won skill” (M. Burry 2011, 38). Even for experienced

practitioners, like Rick Smith, the networks of explicit functions they weave

often become so brittle that starting over is easier than making a change.

Flexible parametric models often turn out to be inflexible in practice,

and models set up to embrace change often instead end up restricting

change. For architects, these difficulties are largely without precedent

since parametric modelling is often “more similar to programming than to

conventional design” (Wesiberg 2008, 16:12). The difficulties are familiar,

however, to many software engineers who also often struggle to create

flexible code – as I will detail in the following chapter.

50

3	 The Design
of Software
Engineering

To a computer, a parametric model reads as a set of instructions. The

computer takes the inputs, applies the sequence of explicit functions, and

thereby generates the parametric model’s outputs. “Anybody involved in

any job that ultimately creates instructions that are executed by a computer,

machine or even biological entity, can be said to be programming”

argues David Rutten (2012), the developer of the popular parametric

modelling interface, Grasshopper. This is not to say programming and

parametric modelling are synonymous. There are clearly significant

differences between designing architecture and designing software. Yet

in both cases, there is a common concern with automating computation

through sequences of instructions. Despite this “common ground”

(Woodbury 2010, 66), and despite architects recognising that parametric

modelling is often “more similar to programming than to conventional

design” (Weisberg 2008, 16.12), the implications of the parallels between

parametric modelling and software engineering remain largely unexplored.

In particular, two pertinent questions remain unaddressed: if parametric

modelling and software engineering both concern the automation of

computers, do they both encounter the same challenges when doing so?

And if they share the same challenges, are parts of their respective bodies

of knowledge transferable in alleviating these challenges?

Woodbury, Aish, and Kilian (2007) have already shown that one area of

software engineering – design patterns – is applicable to the practice of

parametric modelling. Yet subsequently Woodbury (2010, 9) has been

cautious in suggesting that architects can learn from software engineers,

saying the practices “differ in more than expertise.” Woodbury (2010, 9)

goes on to describe architects as “amateur programmers” who naturally

“leave abstraction, generality and reuse mostly for ‘real programmers’.”

In this chapter I will show how abstraction, generality, and reuse have

not always been the foremost concern of ‘real programmers’, and how

Woodbury’s assessment of contemporary architects could equally apply

51

to past software engineers. Thus, while Woodbury (2010, 9) sees today’s

architects as amateur programmers who are largely disinterested in

software engineering, past preferences need not inform future practices.

Given the success Woodbury et al. (2007) have had at improving the practice

of parametric modelling with knowledge from software engineering, there

is reason to suspect many more parts of the software engineering body

of knowledge are also applicable to the practice of parametric modelling.

In this chapter I aim to identify the areas of knowledge employed by

software engineers that could potentially help architects creating flexible

parametric models. I begin the chapter by discussing how programmers

once faced a software crisis not too dissimilar to the challenges architects

are currently facing with their parametric models. I go on to discuss the

body of knowledge that helped programmers overcome the software crisis

and hypothesise about which aspects of this body of knowledge may be

applicable to the practice of parametric modelling.

3.1	 The Software Crisis

In the 1960s, around the time that Ivan Sutherland was creating Sketchpad,

a number of big software projects unexpectedly failed. These failures

“brought big companies [like IBM] to the brink of collapse” recalls Turing

award-winner Niklaus Wirth (2008, 33) in his Brief History of Software

Engineering.1 The most shocking feature of the failures is that they happened

during a period of substantial progress in computation; a period where

newly invented third-generation programming languages were running

atop processors with exponentially increasing speeds (Wirth 2008, 33).

Yet, despite these advances, projects were coming in significantly over

budget, they were late or, even worse, they were abandoned. A notable

example is IBM’s System/360 project, managed by Frederick Brooks, which

in 1964 was one of the largest software projects ever undertaken. The size

of the project was possible since computers had become “several orders of

1	 While computers are a relatively recent invention, their rapid development has left
behind an immense history. In this chapter I only touch two aspects of this history:
the software crisis and the cost of change curve. For a more complete history I would
recommend starting with Wirth’s (2008) Brief History of Software Engineering, which
references a number of the key papers. Unfortunately it seems no one has yet written a
comprehensive book on history of software engineering – perhaps due to the size and
speed of the industry – so beyond Wirth’s paper the best sources tend to be books and
articles published from the period, such as Brook’s (1975) The Mythical Man-month.
Numerous guides to the best literature can be found online.

52

magnitude more powerful” (Dijkstra 1972, 861) but the size of the project

also amplified fundamental problems with programming. These problems

could not be overcome by hiring several orders of magnitude more

programmers. “Adding manpower to a late software project makes it later”

says Brooks (1975, 25) reflecting on his management of System/360 in the

seminal software engineering book, The Mythical Man-month. In the end,

IBM’s ambitious System/360 unification, like many software engineering

projects in the 1960s, was years late and cost millions of dollars more than

budgeted (Philipson 2005, 19).

And so began the software crisis, a period when the hope borne of the

relentless progression of computation was crushed; not by processing

speeds derailing from their unlikely exponential increases but rather

“crushed by the complexities of our own making” (Dijkstra 1997, 63);

crushed by the challenge of simply writing software (Dorfman and Thayer

1996, 1-3). Wirth (2008, 33) observes “it was slowly recognized that

programming was a difficult task, and that mastering complex problems

was non-trivial, even when – or because – computers were so powerful.”

This realisation resembles the current situation in architecture, where the

vast improvements in parametric modelling over the past decade have

exposed the difficulties of simply creating a parametric model. In much the

same way architects may blame themselves for failing to anticipate changes

to an inflexible parametric model, programmers feared human cognition,

not computer power, would be the limiting factor in the application of

computation. This idea was so alarming that in 1968 NATO assembled a

team of scientists “to shed further light on the many current problems in

software engineering” (Naur and Randell 1968, 14).

The NATO Software Engineering conference was a watershed moment.

Amongst discussions of whether anyone had died from the software

crisis2 was talk of “slipped schedules, extensive rewriting, much lost

effort, large numbers of bugs, and an inflexible and unwieldy product”

(Naur and Randell 1968, 122). These issues describe, almost word-for-

word, the challenges many architects face when using parametric models

(see chap. 2.3). In responding to these difficulties, the inclination at

the NATO conference was to gather data rather than rely on intuition.

2	 Computers in 1968 were “becoming increasingly integrated into the central activities of
modern society” (Naur and Randell 1968, 3) and many at the conference were concerned
that software failures would come to harm those who were now relying upon computers.

53

The term Software Engineering originates from the conference’s title, which

is a provocative attempt to “imply the need for software manufacture to

be based on the types of theoretical foundations and practical disciplines,

that are traditional in the established branches of engineering” (Naur and

Randell 1968, 13). In this respect, the discipline of software engineering

arises as a direct response to the software crisis; an attempt to overcome

the crisis through a reasoned understanding of software manufacturing.

Boehm’s Curve

Barry Boehm did not attend the 1968 NATO conference but it clearly

influenced him. As the attendees of the conference had done, Boehm

warned in 1972 that software “was often late and unreliable, and that the

costs were rising” (Whitaker 1993, 300). This was considered a “shocking

conclusion at the time” (Whitaker 1993, 300) and the United States Air

Force, who had commissioned the study, refused to publish the findings,

which they “rejected out of hand” (1993, 300). Boehm returned four

years later with a paper bearing the same title as the NATO conference:

Software Engineering (Boehm 1976). In this paper Boehm (1976, 1126-27)

once again produced graphs showing that software was becoming more

expensive than the hardware it ran on. However, the paper is perhaps

better known for another graph it contains, a graph that has come to be

known as Boehm’s curve (fig. 11; 1976, 1228; 1981, 40).

Boehm’s curve (fig. 11) observes that as a computer program becomes more

developed, it also becomes more difficult to change. This was the same

observation Paulson (1976, 588) had made about architecture projects

that same year (see chap. 2.2).3 Paulson and Boehm’s curves have the same

axes, the same shape, and the same conclusion. The major difference is that

Boehm’s curve has supporting data while Paulson’s curve is more a diagram

of what he thought was happening. The data in Boehm’s curve forecasts

that making a change late in a software project costs one hundred times

more than making the same change at the project’s inception. In effect,

a software project – like an architecture project – becomes substantially

less flexible over time and, as a result, the programmer’s capacity to make

changes is greatly diminished by the increasing cost of change.

3	 I can find no evidence that Paulson or Boehm knew of each other’s work.

Figure 11: Boehm’s
curve (1981, 40).
An elaboration of
Boehm’s earlier
curve (1976, 1228).
Note that Boehm
plotted the data
logarithmically. When
plotted on a linear
scale it resembles
figure 12, which
closely matches
Paulson (fig. 9) and
MacLeamy’s curve
(fig. 10).

Figure 12: Boehm’s
curve plotted on a linear
scale (Beck 1999, 26).

Figure 13: Beck’s
curve (1999, 28).
There are no project
stage demarcations
on the horizontal axis
because the relatively
constant cost of change
allows the project to
cycle rapidly through
iterations, which enables
traditionally early stage
activities, like developing
the project requirements,
to continue late into the
project – and vice versa
(Beck 1999, 28).

55

Beck’s Curve

Some programmers reacted to Boehm’s curve by trying to avoid change,

their rationale being that if a change costs one hundred times more to

make at the end of the project, then it makes sense to spend considerable

time upfront preventing any late-stage changes. This is the same premise

and conclusion that led MacLeamy to advocate the front-loading of

architecture projects to avoid late-stage changes (see chap. 2.2). For

software engineers, a common way to suppress change is with Winston

Royce’s (1970) waterfall method. In the waterfall method, a project is

broken down into a series of stages: requirements, design, implementation,

verification, and maintenance. The breakdown resembles the stages

routinely used in architecture and engineering projects. Each stage is

completed before proceeding to the next, with the hope being that if the

requirements are finalised before commencing the design (or any other

subsequent stage), then there will be no late changes from unexpected

alterations to the requirements (or any other proceeding stage). Of

course, finalising the requirements without seeing the design is a tricky

proposition (Microsoft 2005).

Royce (1970) was aware of the waterfall method’s shortcomings having

originally introduced it as an example of how not to organise a software

project. The waterfall method was, in fact, Royce’s antithesis. Royce (1970,

329) warned that the waterfall method was “risky and invites failure”, yet

to his dismay, many of Royce’s readers disagreed with him and instead

sided with the logic of what he was arguing against. The waterfall method

became what Boehm (1988, 63) describes as “the basis for most software

acquisition standards,” perhaps due to its clean hierarchical divisions of

labour and affinity for fitting in a Gantt chart.

The method Royce (1970, 329-38) intended to advocate took the waterfall’s

sequential progression and broke it with eddies of feedback between the

stages. This idea was extended by Boehm (1981, 41) who argued the cost

of making late-stage changes was so high that in some cases it might

be more effective to make successive prototypes with feedback between

each iteration. Boehm (1988) later formalised this method into the Spiral

Model of software development, which, much like Schön’s Reflective

Practice (1983), coils through stages of creating prototypes, evaluating

the prototypes, reflecting upon the prototypes, and planning the next

56

stage of work. This designerly way of approaching programming forms

the basis of the Manifesto for Agile Software Development (Beck et al. 2001a).

The manifesto’s fourth and final demand urges programmers to “respond

to change over following a plan” (Beck et al. 2001a) – a demand that at once

attacks the perceived rigidity of the waterfall method’s front-loading whilst

also suggesting that Boehm’s cost of change curve need not be a barrier

to making change. A number of programming methodologies fall under

the banner of agile development, which includes Extreme Programming,

Agile Unified Process, and Scrum. Kent Beck, the first signatory to the

agile manifesto and the originator of Extreme Programming, captures the

motivations of these methods in a book subtitled Embrace Change:

The software development community has spent enormous resources

in recent decades trying to reduce the cost of change—better

languages, better database technology, better programming practices,

better environments and tools, new notations. What would we do if

all that investment paid off? What if all that work on languages and

databases and whatnot actually got somewhere? What if the cost of

change didn’t rise exponentially over time [figure 12], but rose much

more slowly, eventually reaching an asymptote? What if tomorrow’s

software engineering professor draws [figure 13] on the board?

Beck 1999, 27

Beck provocatively suggests that Boehm’s curve (fig. 12) is no longer

relevant when programmers have knowledge of “better languages, better

database technology, better programming practices, better environments

and tools, new notations” (Beck 1999, 27). In effect, Beck says that

programmers can flatten the cost of change with the body of knowledge

associated with software engineering. This flattening is now known as

Beck’s curve (fig. 13). An important implication of Beck’s curve is that

the demarcations between project stages (such as: requirements, design,

and production) have less importance since a relatively constant cost

of change allows “big decisions [to be made] as late in the process as

possible, to defer the cost of making the decisions and to have the greatest

possible chance that they would be right” (Beck 1999, 28). This was a bold

prediction in 1999, but increasingly studies are indicating that software

engineers have gained the knowledge to lower the cost of changes. A large

industry survey by the Standish Group (2012, 25) concludes “the agile

process is the universal remedy for software development project failure.

57

Software applications developed through the agile process have three

times the success rate of the traditional waterfall method and a much

lower percentage of time and cost overruns.” This seems to carry through

into the practice of software engineering, with Dave West and Tom Grant

(2010, 2) showing that programmers now use agile development more

often than the waterfall method. While these results do not speak directly

to Beck’s curve, it is important to remember that “a flattened change cost

curve makes [agile development] possible” (Beck 1999, 28). Remarkably, in

only forty years, software engineering has gone from a point of crisis where

the cost of late-stage changes seriously threatened the entire industry, to

a point where the majority of software engineers are using a development

method whose central tenet is to “welcome changing requirements, even

late in development” (Beck et al. 2001b). As Beck (1999, 27) points out,

the road out of the software crisis was “decades [of] trying to reduce the

cost of change” now captured in an extensive body of knowledge related

to software development.

3.2	 The Software Engineering

Body of Knowledge

There is reason to suspect the body of knowledge concerning software

engineering may also apply to architects using parametric models. Frederick

Brooks (2010) makes a similar connection in his book The Design of Design,

where he recounts designing his house and relates this to his experiences

managing the design of IBM’s System/360 architecture (2010, 257-346).

Brooks (2010, 21) says change is inevitable for both programmers and

architects since they both normally begin with “a vague, incompletely

specified goal, or primary objective” only clarified through iteratively

creating and changing prototypes. These difficulties are compounded in

the two practices, both by the fact that the cost of change generally rises

exponentially as a project progresses, and by the fact that undetermined

outcomes need to be expressed in logically precise instructions for the

computer. While this problem is relatively new for architects creating

parametric models, the same problem has challenged software engineering

for decades. Evidence suggests that the knowledge software engineers have

gained during this time allows them some control over the cost of change.

This knowledge could potentially do the same in architecture.

58

There are two main caveats in applying software engineering to parametric

modelling. One caveat is that software engineers are often not particularly

successful at what they do. On average, 49% of software projects using an

agile development process will encounter significant challenges while 9%

will fail outright. Just 42% of software projects are delivered on time, on

budget, and with the specified features (fig. 14). While a 42% success rate

may sound low, the Standish Group (2012, 25) says this represents the

“universal remedy for software development project failure” principally

because software engineers have historically had a success rate of only 16%

(fig. 14; The Standish Group 1994). Thus, even software engineers following

the best practices still encounter trouble more than they encounter success.

Another important caveat is that creating software is similar, but not

identical, to creating architecture. Broadly speaking, some common points

of difference include the following:

•	 The user: Software engineers tend to make software used by other

people, whereas architects generally create parametric models for

either themselves or for their colleagues.

•	 The product: Software engineers make software but architects

ultimately make architecture rather than parametric models. While

software may be evaluated in and of itself, a parametric model is

typically valued for the architecture it produces.

•	 Team size: Software engineering teams range from lone individuals

building an app, to thousands of developers creating an operating

system. In comparison, parametric models are generally made by

teams at the smaller end of this range.

•	 Project lifetime: Software engineering projects may last anywhere from

a few minutes to a few decades, whereas the code in a parametric model

is unlikely to persist beyond a few years (or perhaps even months).

53%

31%
16%

57%

29%
14%

49%

9%

42%

1994 2012 –Agile2012 –WaterfallFigure 14: The success
and failure rates of
software projects
according to The
Standish Group’s
industry survey (1994;
2012).

 Successful projects
– delivered on-time,
on-budget, and with the
planned features.

 Challenged projects
– either: over time,
over budget, or lacking
features.

 Failed projects – the
project was abandoned.

59

There will be numerous exceptions to these broad generalisations.

The point, however, is that while architects and software engineers share

similar challenges, not all of software engineering is equally relevant to

the idiosyncratic circumstances of parametric modelling. In this section I

outline the software engineering body of knowledge and hypothesise about

which parts are most pertinent to the practice of parametric modelling.

Classifying Knowledge

There have been a number of attempts to classify knowledge relating to

software engineering. In 1997, the Institute of Electrical and Electronic

Engineers (IEEE) formed a committee tasked with creating the first

“comprehensive body of knowledge for software engineering” (Hilburn

et al. 1999, 2). This was a controversial undertaking. The Association

for Computer Machinery (ACM) feared the body of knowledge “would

likely provide the basis for an exam for licensing software engineers as

professional engineers” (ACM 2000). The ACM, like many others, withdrew

their support of the project. The IEEE committee’s four-year schedule

dragged into seven years of deliberation. Meanwhile, Thomas Hilburn et al.

(1999) sidestepped the IEEE committee to produce their own, and the

first, Software Engineering Body of Knowledge Version 1.0 (SWEBOK.1999;

fig. 15). This document captured the expected knowledge of a programmer

who has spent three years in the industry, and was released in conjunction

with Donald Bagert et al. (1999) corresponding Guidelines for Software

Engineering Education Version 1.0 (SE.1999). Eventually, in 2004, a similar

pair of documents was published by the IEEE committee: Alain Abran and

James Moore’s (2004) Guide to the Software Engineering Body of Knowledge

(SWEBOK.2004) along with Jorge Díaz-Herrera and Thomas Hilburn’s

(2004) Software Engineering 2004: Curriculum Guidelines for Undergraduate

Degree Programs in Software Engineering (SE.2004).

The relationship between the various SWEBOK is shown in figure 15.

While the taxonomies are different, they all use the waterfall method as

a template for classifying the software engineering process. This is not

an endorsement of the waterfall method since the division of knowledge

need not prescribe its deployment. For example, projects using an agile

methodology necessarily apply knowledge of planning and coding and

testing, although not in the same linear fashion as projects using the

C
hapters in this thesis

M
ethod: M

easurem
ent

C
ASE A: Paradigm

s
C

ASE B: Structure
C

ASE C
: IDE’s

(ch. 4)
(ch. 5)
(ch. 6)
(ch. 7)

W
aterfall

Royce 1970

1. System
 Requirem

ents
2. Softw

are Requirem
ents

3. Analysis
4. Design
5. C

oding
6. Testing
7. O

perations

SW
EBO

K
.2004

Abran and M
oore et al. 2004

1. Requirem
ents

2. Design
3. C

onstruction
4. Testing
5. M

aintenance
6. C

onfiguration M
anagem

ent
7. Engineering m

anagem
ent

8. Engineering process
9. Engineering tools and m

ethods
10. Softw

are quality

SW
EBO

K
.1999

H
ilburn et al. 1999

C
om

puting Fundam
entals

1.1 Algorithm
s & data structures

1.2 C
om

puter architecture
1.3 M

athem
atical foundations

1.4 O
perating System

s
1.5 Program

m
ing languages

Engineering
2.1 Requirem

ents
2.2 Design
2.3 C

oding
2.4 Testing
2.5 M

aintenance

Softw
are m

anagem
ent

3.1 Project M
anagem

ent
3.2 Risk M

anagem
ent

3.3 Q
uality M

anagem
ent

3.4 C
onfiguration M

anagem
ent

3.5 Process M
anagem

ent
3.6 Softw

are Acquisition

SE.2004
Díaz-H

errera and H
ilburn et al. 2004

1. C
om

puting Essentials
2. M

athem
atical fundam

entals
3. Professional Practice
4. Softw

are M
odelling and Analysis

5. Softw
are Design

6. Softw
are Verification

7. Softw
are Evolution

8. Softw
are Process

9. Softw
are quality

10. Softw
are M

anagem
ent

SE.1999
Bagert et al. 1999

C
ore area

1.1 Softw
are Requirem

ents
1.2 Softw

are Design
1.3 Softw

are C
onstruction

1.4 Softw
are Project M

anagem
ent

1.5 Softw
are Evolution

Foundation Area
2.1 C

om
puting Fundam

entals
2.2 H

um
an Factors

2.3 Application Dom
ains

Recurring Area
3.1 Ethics and Professionalism
3.2 Softw

are Process
3.3 Softw

are Q
uality

3.4 Softw
are M

odeling
3.5 Softw

are M
etrics

3.6 Tools and Environm
ents

3.7 Docum
entation

Figure 15: Comparison of
various Software Engineering
Bodies of Knowledge.

 Equivalent knowledge areas.

 Areas of knowledge applied
to parametric modelling in my
research.

61

waterfall method. With each SWEBOK agnostically employing the waterfall

method’s stages, the key differences between the various SWEBOK lie in

the classification of knowledge not pertaining to the waterfall’s stages.

The SWEBOK.1999 clearly segregates these areas, with waterfall’s

stages confined to the engineering category, which is separated from the

computing fundamentals category and the software management category.

While software management reappears in all the other SWEBOK, the

computing fundamentals category is unique to the SWEBOK.1999 and

covers areas of knowledge – like computer hardware and programming

languages – that are potentially applicable to parametric modelling.

For this reason, I have selected the SWEBOK.1999 to use in the following

pages as I hypothesise about which parts are also applicable to architects

creating parametric models. However, given the relative homogeneity of

the various SWEBOK, I would expect similar results from using any of the

other SWEBOK.

1.	 Computing Fundamentals

The Computing Fundamentals [1] category of the SWEBOK.1999 covers the

foundational theories and concepts of software engineering. Many parts

of this category are so essential to computing that they already necessarily

contribute to parametric modelling. For instance, Computer Architecture

[1.2] concerns the underlying structure of a computer, which includes

the way transistors are laid out to allow more intensive calculations, and

how networks exchange data to permit remote collaboration. Deriving the

benefits of this knowledge requires no intervention from the software

engineer or parametric modeller since it is encapsulated within a

computer’s hardware. The same is true of both the Mathematical Foundation

[1.3], which provides the formal logic to programming, and of Operating

Systems [1.4], which provides the framework supporting the software.

While the Computer Architecture [1.2], the Mathematical Foundations [1.3],

and Operating Systems [1.4] have made large contributions to software

engineering, these contributions come – in many ways – independent

of the actions from software engineers. By proxy, designers are already

benefiting from these areas of Computing Fundamentals [1] whenever they

purchase new computer hardware or invest in new operating systems.

SWEBOK.1999
Hilburn et al. 1999

Computing Fundamentals
1.1 Algorithms & Data Strct.
1.2 Computer Architecture
1.3 Mathematical Fndn.
1.4 Operating System
1.5 Programming Languages

Engineering
2.1 Requirements
2.2 Design
2.3 Coding
2.4 Testing
2.5 Maintenance

Software management
3.1 Project Management
3.2 Risk Management
3.3 Quality Management
3.4 Configuration Mgmt.
3.5 Process Management
3.6 Software Acquisition

62

Algorithms and Data Structures [1.1] are not built into hardware and must

instead be actively fashioned for a particular task. Considerable research

has gone into tailoring Algorithms [1.1.2] and Data Structures [1.1.1]

for parametric modelling. Examples of existing Algorithms [1.1.2] used

in parametric modelling include algorithms for propagating changes

through parametric models (Woodbury 2010, 15-16), rationalisation

algorithms for simplifying complex surfaces (Wallner and Pottmann 2011),

algorithms for simulating physical properties (such as: Piker 2011), and

many proprietary algorithms buried in commercial software and geometry

kernels (such as: Aish et al. 2012). Similar work has been done on Data

Structures [1.1.1] to develop specialised file formats for things like sharing

BIM models, describing B-rep geometry, and saving parametric models.

While there is scope to further these existing Algorithms [1.1.2] and Data

Structures [1.1.1], any improvements are likely to be refinements of what

already exists. Given the maturity of the research in this area, I see few

opportunities to address the flexibility of parametric models through

making further contributions to Algorithms and Data Structures [1.1].

As with Algorithms and Data Structures [1.1], there are already many

Programming Languages [1.5] for architects creating parametric models.

Every programming language has a unique style for expressing concepts,

which is called the language’s Programming Paradigm [1.5.2] (fig. 16).

The paradigm influences how problems are solved in a particular language.

Procedural Object
Oriented

Parallel
Processing

FunctionalLogic Database

Imperative Declarative

 Paradigms

Dataflow

Grasshopper
GC

Houdini
MaxMsp

Maxscript

AutoCAD .NET
MEL

Processing
Revit Python
Rhino Python

GDL
Rhino VB

Digital Project VB

Figure 16: The
programming
languages architects use
categorised by Appleby
and VandeKopple’s
(1997, xiv) taxonomy of
programming paradigms.

63

For instance, Appleby and VandeKopple (1997, 7) show how the United

States Department of Defense addressed problems of “unmaintainable”

and “fragile” software by creating a new multi-paradigm programming

language, Ada (first released 1980). Appleby and VandeKopple (1997, xiv)

divide programming paradigms – as many others do – into imperative

paradigms and declarative paradigms (fig. 16). I will explain these

denominations later in chapter 5 but for now it suffices to say that there

is a broad taxonomy of possible programming paradigms. Currently

architects only have access to two narrow bands of programming paradigms

(see distribution in figure 16): the major textual CAD programming

languages4 are all predominantly imperative with a bias towards procedural

programming; whereas, the major visual CAD programming languages5 all

reside in a very narrow subsection of declarative programming known as

dataflow programming. While the two bands of paradigms occupied by CAD

programming languages are well researched, they are ultimately limited.

For architects this means they have a confined range of styles available to

express ideas programmatically. This presents an opportunity to expand

the practice of parametric modelling by borrowing new programming

paradigms from software engineers.

2.	 Software Product Engineering

The Software Product Engineering [2] category of the SWEBOK.1999

describes the activities involved in producing software. These activities

are categorised by the phases of the waterfall method. As I explained in

the preceding pages, the divisions do not prescribe that software engineers

use the waterfall method since these categories are intended to capture the

knowledge necessary for producing software independent of the overall

programming process.

Software Product Engineering’s [2] first area of knowledge is Software

Requirements Engineering [2.1], which pertains to the creation of project

briefs. By and large there is nothing particularly remarkable about the

way programmers create briefs. Like in other disciplines, they analyse the

situation [2.1.1], generate requirements [2.1.2], and write specifications

4	 This includes: 3dsMax: Maxscript; Archicad: GDL; Autocad: AutoLISP; Digital Project:
Visual Basic; Maya: Maya Embedded Language; Processing: Java; Revit: Visual Basic &
Python; Rhino: Visual Basic & Python; Sketchup: Ruby.

5	 This includes: Grasshopper; GenerativeComponents; Houdini; and MaxMsp.

SWEBOK.1999
Hilburn et al. 1999

Computing Fundamentals
1.1 Algorithms & Data Strct.
1.2 Computer Architecture
1.3 Mathematical Fndn.
1.4 Operating System
1.5 Programming Languages

Engineering
2.1 Requirements
2.2 Design
2.3 Coding
2.4 Testing
2.5 Maintenance

Software management
3.1 Project Management
3.2 Risk Management
3.3 Quality Management
3.4 Configuration Mgmt.
3.5 Process Management
3.6 Software Acquisition

64

[2.1.3]. While these are important steps in producing software, they are a

process architects are likely already adept at.

From the Requirements [2.1] flows the Software Design [2.2], which in

software engineering concerns the design of interfaces as well as the

structure of code, data, and algorithms. Spending time structuring code

rather than writing code has not always been a pastime of programmers.

Prior to the software crisis, most programming languages (like FORTRAN)

did not have a syntax for describing structure. The resulting programs

generally had what Bertrand Meyer (1997, 678) calls, the “unmistakable

‘spaghetti bowl’ look” of logic weaving haphazardly through unstructured

code. Edsger Dijkstra (1968, 148) called the unstructured jumps “harmful”

and “too much an invitation to make a mess of one’s program” (an

observation he made in the same year as the NATO Software Engineering

conference). In the ensuing years, most programming languages have

adopted Böhm and Jacopini’s (1966) concept of enforcing structure with

conditionals, loops, and subprograms. Meyer (1997, 40-46) argues that

these structures help to decompose incomprehensibly large problems into

vastly more understandable smaller structured chunks.6 Despite these

benefits, most parametric software has only rudimentary support for

structure, which the vast majority of architects – like programmers prior

to the software crisis – shun in favour of unstructured models (the low

rates of structure are revealed and discussed in chapter 6.3). Woodbury,

Aish, and Kilian’s (2007) Some Patterns for Parametric Modeling suggests

some common structures for parametric models, however, their structures

are predominately focused on solving architectural design problems

rather than addressing the problems of unstructured code. Accordingly,

there remains significant scope to implement relatively straightforward

structuring techniques on parametric models, which (based on evidence

from similar interventions during the software crisis) may improve the

understandability of parametric models.

The actual act of writing computer code is covered in Code Implementation

[2.3.1], a subsection of Software Coding [2.3]. At first glance, writing

code may seem worthy of a more prominent place in the SWEBOK.1999,

especially given that writing code is one of the defining jobs of a software

6	 Meyer (1997, 40-46) cites benefits to code decomposition, composition,
understandability, continuity, and protection, which I will discuss in further in
chapter 6.2.

65

engineer. Yet, the positioning of Code Implementation [2.3.1] in such a minor

category indicates how much ancillary knowledge goes into successfully

writing code. This is an important observation when considering what

architects need to learn in order to create a parametric model, and it

is a point I will return to in the discussion (chap. 8.4) as I contrast the

education of software engineers with the education of architects learning

to use parametric models.

The Code Implementation [2.3.1] category also encompasses tools

programmers use to write code. These tools, known as Integrated

Development Environments (IDE), assist programmers by managing the

compiling and debugging of code, as well as providing feedback to aid code

comprehension (such as: pointing out possible coding errors, or explaining

the meaning of a particular programming command). In contrast, Leitão,

Santos, and Lopes (2012, 143) say “the absence of a (good) IDE” for

parametric modelling “requires users to either remember the functionality

or read extensive documentation.” They go on to say, “an iterative write-

compile-execute cycle,” implemented in most parametric modelling

environments, “results in non-interactive development” (2012, 143). These

limitations in the tools architects use to create parametric models could be

addressed by borrowing concepts like live-debugging, live-programming,

and other innovations from the IDEs software engineers use.

Software Coding [2.3] has two additional sections: Reuse [2.3.2], and

Standards and Documentation [2.3.3]. Both of these sections are related to

Software Design [2.2]. Reuse [2.3.2] relates to how the program has been

structured and particularly whether modules of code can be extracted and

shared. The structure also plays a role in Standards and Documentation

[2.3.3] since these are tied to the levels of abstraction in the structure.

Both Reuse [2.3.2] and Standards and Documentation [2.3.3] help reinforce

the importance of well-structured programs and give more impetus to

investigate the structure of parametric models.

Software Testing [2.4] involves verifying code correctness. Programmers

like to automate this process, either by using metrics for measuring

performance [2.4.4], or by automated unit testing of the code itself

[2.4.1, 2.4.2], or even with quantitative experiments like A/B testing user

behaviour. Anecdotally, architects seem to test their models by manually

verifying the outputs, which can lead to problems like change blindness

SWEBOK.1999
Hilburn et al. 1999

Computing Fundamentals
1.1 Algorithms & Data Strct.
1.2 Computer Architecture
1.3 Mathematical Fndn.
1.4 Operating System
1.5 Programming Languages

Engineering
2.1 Requirements
2.2 Design
2.3 Coding
2.4 Testing
2.5 Maintenance

Software management
3.1 Project Management
3.2 Risk Management
3.3 Quality Management
3.4 Configuration Mgmt.
3.5 Process Management
3.6 Software Acquisition

66

(see chap. 2.3). Schultz, Amor, and Guesgen (2009, 402) demonstrate

that testing methods “inspired by research in software engineering” may

be applied to “qualitative spatial” problems. While there is considerable

opportunity for further research in this area, given my focus on parametric

model flexibility, I have elected to look only at Software Testing [2.4] in

relation to measuring model flexibly with software metrics [2.4.4]

(see chap. 4).

The final category in Software Product Engineering [2] is Software Operations

and Maintenance [2.5], which embodies “concepts, methods, processes,

and techniques that support the ability of a software system to change,

evolve, and survive” (Hilburn et al. 1999, 25). In a similar manner, my

research focuses on the change, evolution, and survival of both software

and parametric models. In software engineering, the Software Maintenance

Process [2.5.3] employs a “process [that] would include phases similar

to those in a process for developing a new software product” (Hilburn

et al. 1999). Thus, while Software Operations and Maintenance [2.5] is a

distinct stage of Software Product Engineering [2], and a stage that closely

resembles the goals of my research, the actual knowledge of operations

and maintenance is already deployed in the prior stages of Software

Product Engineering [2].

3.	 Software Management

Software Management [3] is the last major category of the SWEBOK.1999.

Many of the same management challenges reoccur in software engineering

and parametric modelling. These include more general challenges, such

as managing a creative process whilst adhering to a budget, a schedule,

and guarantees of quality; and these also include more specific challenges,

like managing the development of code when the programming

language requires precision but the outcome is uncertain. Accordingly,

the management strategies employed by software engineers often have

rough equivalence to strategies employed by architects. For example,

the waterfall method has similar stages and a similar shift in effort to

MacLeamy’s front-loading, and agile development has a similar pattern of

iterative prototyping present in Schön’s reflective practice.

67

However, within these general areas of agreement, there are idiosyncrasies

to the specific management practices of software engineers. In Software

Quality Management [3.3] (which overlaps with Testing [2.4]), software

engineers emphasise automated quantitative measures of quality, either

through unit testing to validate the code or through metrics to measure

code quality objectively (these are applied to parametric models in

chapter 4.3). And in Software Process Management [3.5] there is a degree

of formalism around the design processes that would be unfamiliar to most

architects. For instance, in the Scrum development process (a popular form

of agile development) the inventors, Jeff Sutherland and Ken Schwaber

(2011, 6-10), specify everything from the number of days a design cycle

should last (a month), to the ideal team size (less than nine people), to

the length of daily meetings (fifteen minutes). Since these management

processes are so tuned to the nuances of programming, further research

is required to establish whether they also translate to the nuances of

parametric modelling.

Whilst Software Management [3] is undoubtedly a ripe area of investigation

in the context of parametric modelling, it is an investigation I will leave for

others to undertake. I have decided to limit my thesis primarily to the study

of Computer Fundamentals [1] and Software Product Engineering [2] because

understanding these technical issues is quite different to understanding

the ethnographic issues of management. Covering both inside one thesis

is unlikely to do justice to either. For this reason I will touch on only some

of the ideas in Software Management [3], notably around Software Quality

Management [3.3], but it will not be a primary focus for the remainder of

this thesis.

SWEBOK.1999
Hilburn et al. 1999

Computing Fundamentals
1.1 Algorithms & Data Strct.
1.2 Computer Architecture
1.3 Mathematical Fndn.
1.4 Operating System
1.5 Programming Languages

Engineering
2.1 Requirements
2.2 Design
2.3 Coding
2.4 Testing
2.5 Maintenance

Software management
3.1 Project Management
3.2 Risk Management
3.3 Quality Management
3.4 Configuration Mgmt.
3.5 Process Management
3.6 Software Acquisition

68

3.3	 Conclusion

The software crisis recalls many of the same challenges of parametric

modelling. For software engineers, the improvements in computation

during the 1960s resulted in more software being developed. The software

was generally growing larger, being written in more abstracted languages,

and running on-top better hardware. However, rather than programming

becoming easier, these improvements intensified the difficulty of simply

writing software (Wirth 2008, 33). Like architects working with parametric

models, software engineers struggled to make changes within the logical

rigidity of programming. These difficulties were amplified by the cost of

change rising exponentially during a project – a phenomena highlighted by

Boehm (1976; fig. 11) in a graph that resembles similar graphs by Paulson

(1976; fig. 9) and MacLeamy (2001; fig. 10).

The software crisis gave rise to software engineering, a discipline dedicated

to understanding the manufacture of software (Naur and Randell 1968, 13).

Since demarcating this area of knowledge in the 1960s, software engineers

have steadily become more successful at producing software (fig. 14; The

Standish Group 1994 & 2012). Software engineers now postulate that that

they can lower the cost of change to the point where the vertical asymptote

of Boehm’s curve bends horizontal (fig. 13; Beck 1999, 27). Such radical

transformations in software engineering arise from knowledge gained

during decades of work studying the software engineering process.

The knowledge that has transformed software engineering is classified

in the Software Engineering Body of Knowledge Version 1.0 (Hilburn et al.

1999). Somewhat surprisingly, the act of writing code occupies a very small

sub-section [2.3.1] of this classification; a position that underscores the

breadth of knowledge (besides simply knowing how to program) required

for successfully developing software. Some areas of knowledge, like Software

Management [3], have direct correlations to the design process. Other

areas, like certain aspects of Computing Fundamentals [1], are so essential to

anything involving a computer that architects already necessarily benefit

from them. However, large portions of the SWEBOK.1999 are largely

without precedent in the practice of parametric modelling. In this chapter I

have identified a number of knowledge areas that are potentially applicable

69

to parametric modelling while being accessible within the technical and

temporal constraints of a PhD thesis. These are:

1.5	 Programming Languages

2.2	 Software Design

2.3	 Software Coding

2.4	 Testing

Programming Languages [1.5], Software Design [2.2], and Software Coding

[2.3] are the respective focus of the three case studies in chapters 5, 6, & 7.

Specifically, chapter 5 explores the impact of under-utilised Programming

Paradigms [1.5.2], chapter 6 considers how the structure of Software Design

[2.2] may apply to a parametric model, and chapter 7 investigates how

Code Implementation [2.3.1] environments inform the development of

parametric models. Each of these chapters aims to assess the influence the

respective area of knowledge has on the flexibility of various parametric

models. In order to measure flexibility, I draw upon the knowledge area of

Testing [2.4], the focus of the following chapter.

SWEBOK.1999
Hilburn et al. 1999

Computing Fundamentals
1.1 Algorithms & Data Strct.
1.2 Computer Architecture
1.3 Mathematical Fndn.
1.4 Operating System
1.5 Programming Languages

Engineering
2.1 Requirements
2.2 Design
2.3 Coding
2.4 Testing
2.5 Maintenance

Software management
3.1 Project Management
3.2 Risk Management
3.3 Quality Management
3.4 Configuration Mgmt.
3.5 Process Management
3.6 Software Acquisition

70

4	 Measuring
Flexibility

Measuring a parametric model’s flexibility is a somewhat challenging

proposition. There is no agreed upon definition of flexibility, nor is

there any existing way to measure it. Furthermore, as I outlined in the

introduction (chap. 1), flexibility is often intwined with the circumstances

of a project, making it hard to clearly observe what is happening. Flexibility

remains largely enigmatic.

In this chapter I outline a framework for observing the flexibility of

parametric models. I begin by proposing a research method that relies

upon triangulation between case studies to mitigate some of the

circumstantial challenges of observing flexibility. In the second half of

the chapter I draw upon concepts encapsulated in the Testing [2.4] section

of the SWEBOK.1999. Borrowing from software engineering, I outline a

suite of quantitative and qualitative research instruments for measuring

various types of flexibility in a parametric model. In aggregate, the research

method and research instruments will serve as a foundation for observing

flexibility in the case studies presented during chapters 5, 6, & 7.

4.1	 Research Method

The flexibility of a parametric model can be hard to observe. To date, the

best observations have come from architects working on projects where the

model became inflexible and failed. While architects can be reluctant to talk

about their failures, the few who have done so (discussed in chapter 2.3)

prove useful in identifying the challenges associated with parametric

modelling. However, in coming to understand why parametric models

are failing, these reports tend to offer little insight beyond documenting

general symptoms – a major change breaks the model, the model is hard

to share, there is a need to anticipate changes whilst parametric modelling

(see chap. 2.3). Most of these observations come in the course of other

research; the authors had not set out to study model flexibility and while

they were able to identify the symptoms of inflexibility, they generally

71

lacked the controls necessary to isolate the contributing factors. Herein

lies the paradox: flexibility is intertwined with the design process yet the

circumstances of the design process make it difficult to obtain confident

observations of parametric model flexibility.

In the introduction (chap. 1) I highlighted that software engineers often

conduct similar studies to my own. When doing so, they face an analogous

challenge of trying to understand the intricate interrelationships between

people, code, and computers. To make sense of these relationships,

Tim Menzies and Forrest Shull (2010, 3) say that software engineers

often seek elegant, repeatable, statistical studies (even the name software

engineering has connotations of this positivist perspective). While such an

approach works for certain aspects of software engineering (like Boehm’s

[1976] empirical analysis regarding the cost of change [fig. 11]) Edsger

Dijkstra (1970, 1) argues that for studies related to practice, it is problematic

to study small, idealised problems and then generalise them by concluding

with the assumption: “… and when faced with a program a thousand times

as large, you compose it in the same way.” Dijkstra (1970, 2) contends

that the “widespread underestimation” of project-based circumstances,

in research prior to 1970, was “one of the major underlying causes of the

current software failure [the software crisis].” Therefore, as I argued in

the introduction (chap. 1), attempting to create a simplified, controlled,

and isolated study may eliminate the best opportunities to observe how

parametric flexibility manifests in practice.

In the introduction I posited that case studies might offer a way to

understand flexibility without needing to isolate research from practice.

While this may be closer to social science than the hard science origins

of software engineering, Andrew Ko (2010, 60) argues such an approach

is “useful in any setting where you don’t know the entire universe of

possible answers to a question. And in software engineering, when is that

not the case?” A salient example from software engineering is Frederick

Brooks’s (1975) The Mythical Man-Month : Essays on Software Engineering

where Brooks reflects upon his experiences managing IBM’s System/360.

These reflections, in a similar spirit to Schön’s (1983) notion of reflection

on action, provide other researchers and practitioners with an insight into

managing a large software project that would be unobtainable from just

72

examining specific parts in isolation. Such a method has a constructivist

worldview where, according to Creswell and Clark (2007, 24), multiple

observations taken from multiple perspectives build inductively towards

“patterns, theories, and generalizations.”

A key component of case study research is selecting a suite of cases that

ensure the validity of anything built inductively on-top of them. Given the

spectrum of issues concerning parametric models, a single case study – or

even a collection of case studies – is unlikely to be entirely representative.

In research projects where instrumental case studies cannot be found,

Robert Stake (2005, 451) encourages researchers to select case studies that

“offer the opportunity to learn” because “sometimes it is better to learn a

lot from an atypical case than a little from a seemingly typical case.” In my

research I want to learn about applying software engineering knowledge

to the practice of parametric modelling. In the previous chapter (chap. 3)

I hypothesised about which aspects of the software engineering body of

knowledge are most likely to influence a parametric model’s flexibility.

In selecting the projects to test this knowledge, the best opportunity to

learn about flexibility is seemingly presented by projects likely to encounter

difficulties. According to the factors I identified in chapter 2.3, the projects

most fated for trouble are those where the following are applicable: the

outcomes cannot be anticipated from the start, major changes are likely,

the model is large or complicated, change blindness occurs, and the model

is shared. A final criterion for selecting the cases is that the projects have

to be accessible and manageable within the three-year period of my PhD

candidature. With these criteria in mind I have selected the following three

case studies:

•	 Case A: Realignment of the Sagrada Família frontons

A project that involves developing a relatively complicated parametric

model to refine an existing model of the Sagrada Família’s frontons.

The project has strict tolerances but there is also ambiguity as to what

the realignment will involve, which causes uncertainty regarding

changes to the project. On this project I investigate how Programming

Paradigms [1.5.2] impact the construction and modification of

parametric models. See chapter 5.

73

•	 Case B: The Dermoid pavilion

The Dermoid pavilion is a collaborative design project involving over

a dozen researchers from Melbourne and Copenhagen. The pavilion’s

wooden reciprocal frame is formidably hard to model. Furthermore,

the models need to remain flexible enough to accommodate major

changes from a range of authors over a period of a year. On this project

I explore how Software Design [2.2] influences the understandability

of parametric models that are used in collaborative environments. See

chapter 6.

•	 Case C: The hyperboloid sound wall.

Change blindness during the design of the hyperboloid sound wall

led to significant problems during the wall’s construction. I revisit

this project and consider how Code Implementation [2.3.1] may help

improve the interactivity of parametric modelling. See chapter 7.

While the three case studies are not necessarily representative of how

parametric models are typically employed in architecture projects, the

slightly atypical nature of the three case studies means that they touch on

many of the major issues concerning parametric modelling. In aggregate,

these cases make up what Robert Stake (2005, 446) calls a “collective

case study” where multiple projects “are chosen because it is believed

that understanding them will lead to better understanding, and perhaps

better theorising, about a still larger collection of cases.” My intention

in selecting the case studies has been to choose three situations where

key challenges of parametric modelling are likely to be exhibited because

I believe understanding the relationship between parametric modelling

and software engineering in these challenging circumstances may lead to

a better understanding of this relationship more generally.

74

4.2	 Research Instruments

A research instrument, as defined by David Evan and Paul Gruba (2002, 85),

is any technique a “scientist might use to carry out their ‘own work’.”

Typical examples include interviews, observations, and surveys. My ‘own

work’ is to understand how knowledge taken from software engineering

impacts the flexibility of the parametric models from the various case

studies. To help me carry out this work, ideally there would be a research

instrument for measuring parametric flexibility. Unfortunately, none exist.

Flexibility concerns, at its essence, the ease with which a model can change.

In a book titled Flexible, Reliable Software, Henrik Christensen (2010, 31)

argues that all models can be changed since “any software system can be

modified (in the extreme case by throwing all the code away and writing

new software from scratch).” These extreme cases are fairly easy to identify:

they are the moments when the designer has no other option but to rebuild

the model (such as the examples discussed in chapter 2.3). Yet, there is a

nuanced spectrum of flexibility leading up to this extreme. Christensen

(2010, 31) says that while any model can be changed “the question

is at what cost?” This is a question Boehm, Paulson, and MacLeamy all

asked when they created their cost of change curves. Ostensibly, the cost

of a modification may seem synonymous with the time taken to make

a modification – if a model facilitates faster changes then presumably

these changes cost less and the model is therefore more flexible than the

alternatives. But the time taken to make a change is only one component

of any particular modification’s cost. If a change results in a model that

is more complicated, less flexible, and more difficult to share, the long-

term cost may be significantly higher than simply the time the change

took to make. Software engineers call the combination of factors: code

quality. In the following pages I outline some of the key quantitative and

qualitative research instruments for measuring code quality. Collectively

these instruments help triangulate an understanding of flexibility that

goes beyond simply measuring how long it takes to make a change.

75

4.3	 Quantitative Flexibility

In an attempt to understand software quality, software engineers have

invented numerous quantitative methods for evaluating various aspects

of their code. There are at least twenty-three unique measures of software

quality categorised in Lincke and Welf’s (2007) Compendium of Software

Quality Standards and Metrics, and over one hundred in the ISO/IEC 9126

standard for Software Product Quality (ISO 2000). While many of these

metrics are only applicable in specific circumstances,1 a few are used

almost universally by software engineers. In the following paragraphs I

take six of the key quantitative metrics and explain how they apply to

parametric modelling.

Construction Time

Construction time measures the time taken to build a model from scratch.

Clearly there are benefits to a shorter construction time, particularly if a

model gets rebuilt frequently during a project. Different users are likely

to have different construction times since the user’s familiarity with a

modelling environment helps determine how quickly they can build a

model. In general, the construction time for a parametric model is often

longer than with other modelling methods because the process of creating

parameters and defining explicit functions typically requires some degree

of front-loading (see chap. 2.3), which is often recouped through shorter

modification times.

Modification Time

The modification time measures the time taken to change the model’s

outputs from one instance to another. Shorter modification times allow

designers to make changes more quickly, which is one of the principle

reasons for using a parametric model. Changes may involve modifying

the values of the model’s parameters and they may involve the generally

more arduous process of modifying the model’s explicit functions. When

designers talk about trying to ‘anticipate flexibility’ (see chap. 2.3) they

are normally talking about reducing the subsequent modification time by

arranging the model so that changes occur through manipulations of the

parameters rather than the often slower manipulations of the functions.

An important point here is that modification time is highly dependent

1	 The ISO/IEC 9126 standard has metrics for everything from how easy the help system
is to use, to how long the user waits while the code accesses an external device.

76

upon the model’s organisation, and particularly how this is impacted by

the vestigial buildup of changes. Furthermore, as with construction time,

the user’s familiarity with a model and modelling environment has a great

bearing on the modification time.

Latency

Latency is the period of time the users waits – after making a change –

to see the model’s latest output. The latency is caused by the computer

performing the calculations necessary to generate the model’s output.

Often these calculations result in an imperceptible latency, but on

computationally intensive models the latency can last minutes and even

hours. Latency is important because designers sometimes fail to observe

changes to a model, particularly if there is a pause between making a change

and the change becoming visible (see chap. 2.3; Nasirova et al. 2011; Erhan,

Woodbury, and Salmasi 2009). For a model to feel interactive, research

suggests that the latency should ideally be less than a tenth of a second

and certainly not much more than one second (Miller 1968, 271; Card,

Robertson, and Mackinlay 1991, 185). In many cases this is impossible

given the computational demands of various geometric calculations, the

limitations of computer hardware, and the bottlenecks in the underlying

algorithms of parametric modelling environments.

Dimensionality

Dimensionality is a tally of a model’s parameters. Or, put another way,

the number of dimensions in the model’s search space. In chapter 2.3 I

explained how a designer has to balance a model’s dimensionality since,

on one hand, parameters can help improve modification times (a higher

dimensionality is better) and yet, on the other hand, too many parameters

makes finding and modifying any individual parameter unwieldy (a lower

dimensionality is better). Therefore, an ideal parametric model would

encompass all the variations the designer wants to explore within the

smallest dimensionality possible.

77

Size

Software engineers commonly measure a program’s size by counting

the lines of code (LOC). It is a somewhat imprecise measure because

programs can be rewritten to occupy more or fewer lines of code. This led

Steven McConnell (2006, 150) to argue, “the LOC measure is a terrible

way to measure software size, except all other ways to measure size are

worse.” While there is a degree of imprecision, the LOC measurement is a

frequently used instrument for quickly understanding the relative size of

software. Ordinarily, a smaller LOC is better since the LOC measurement

correlates highly with both code complexity (van der Meulen and Revilla

2007) and the number of coding errors (El Emam et al. 2001) – in essence,

more lines of code provide more opportunities for things to go wrong.

In my research I use the physical lines of code measure – the number of

lines of code actually written in the programming environment. In visual

programming languages a node can be considered roughly equivalent to

a line of code. Thus, I measure the size of visual programs throughout

my research by counting the number of nodes. This allows comparisons

between various visual programs however, given the differences between

textual lines of code and visual nodes, comparisons cannot be made

between the sizes of textual and visual programs.

Cyclomatic Complexity

Cyclomatic complexity is a core software engineering metric for measuring

code structure. In technical terms, the cyclomatic complexity is the number

of independent paths through a directed acyclic graph (DAG). This can

be seen visually in figure 17 & 18. The cyclomatic complexity is typically

calculated using Thomas McCabe’s (1976, 314) formula:

Where:

•	 G: the graph.

•	 e: number of edges. I count parallel edges between identical nodes

(duplicate edges) as a single edge.

•	 n: number of nodes. I do not count non-functional nodes such as

comments in text boxes.

•	 p: number of independent graphs (parts).

78

Which (assuming p to be 1) simplifies to:

McCabe’s formula assumes the DAG has only one input node and one

output node, which is infrequently the case with parametric models.

In an appraisal of common modifications to McCabe’s original formula,

Henderson-Seller and Tegarden (1994, 263) show that “additional

(fictitious) edges” can be introduced to deal with multiple inputs and

outputs. Thus the cyclomatic complexity formula becomes:

4
5
1
1

Edges
Nodes
Paths
Complexity

6
5
3
3

Edges
Nodes
Paths
Complexity

Figure 17: A directed
acyclic graph comprised
of a single path, which
gives it a cyclomatic
complexity of one.

Figure 18: A graph with
the same number of
nodes as in figure 17 but
with three distinct paths
(each colour coded). This
graph therefore has a
cyclomatic complexity
of three.

Where:

•	 i: number of inputs (dimensionality).

•	 u: number of outputs.

The cyclomatic complexity indicates how much work is involved in

understanding a piece of code. For instance, the DAG in figure 17 can

be understood by reading sequentially along the single path of nodes.

But understanding the more complicated DAG in figure 18 requires

simultaneously reading through three different paths as they diverge and

converge back together. While it may be possible to comprehend how three

paths interact, this becomes evermore difficult as the complexity increases.

As a result, McCabe (1976, 314) recommends restructuring any code with

a cyclomatic complexity greater than ten (an idea I explore further in

chapter 6). This limit has been reaffirmed by many studies including the

United State’s National Institute of Standards and Technology who write,

“the original limit of 10 as proposed by McCabe has significant supporting

evidence” (Watson and McCabe 1996, sec. 2.5).

79

Applying Quantitative Metrics

Quantitative metrics lend themselves to statistical analysis. If a collection

of code samples are each quantitatively measured, the measurements can

be aggregated together and analysed to help identify general trends in

the sampled population. This type of analysis does not appear to have

been performed in any previous study on parametric models. As a result,

the current understanding of parametric modelling is largely confined to

firsthand accounts of working with specific parametric models (referred

to in chapter 2.3). This leaves significant gaps in the understanding of

parametric modelling and many basic questions – such as what is the

average size of a parametric model or how complicated is the typical

parametric model – remain unanswered. In the following pages I attempt

to answer some of these basic questions and establish baselines for the key

quantitative metrics I previously discussed (parts of this study were first

published in Davis 2011b and then subsequently in Davis et al. 2011b).

Assembling a representative collection of parametric models is difficult

since researchers generally only have access to parametric models created

by themselves or their colleagues – a likely reason no previous study

has quantitatively analysed a group of parametric models. But recently,

with the advent of websites enabling communities of designers to share

parametric models publicly, large collections of parametric models have

been made available. One such website is McNeel’s Grasshopper online

forum (grasshopper3d.com) where, between 8 May 2009 and 22 August

2011, 575 designers shared 2041 parametric models. The models are all

created in the Grasshopper modelling environment and tend be either a

model a designer is having problems with or a model a designer thinks will

solve another’s problem. While this collection is not strictly representative

of parametric modelling generally, it is a significant advancement over

any previous study to be able to analyse, for the first time, how a large

number of designers organise models created in a popular parametric

modelling environment.

Method

To analyse the models publicly shared on the Grasshopper forum, I first

download the 2041 parametric models. The oldest model was from 8 May

2009 and created with Grasshopper 0.6.12, and the most recent model

was from 22 August 2011 and created with Grasshopper 0.8.0050. All the

100 20 30 40 50 60 70 80 90
Size

60

40

20

0

N
um

be
r o

f m
od

el
s

Median: 23

0 5 10 15
Dimensionality

200

100

0

Median: 6

N
um

be
r o

f m
od

el
s

0 12 24 36 48

Cyclomatic Complexity

100

50

0

Median: 13

N
um

be
r o

f m
od

el
s

Figure 19:
Distribution of model
size in population
of 2002 parametric
models.

Figure 21:
Distribution of model
cyclomatic complexity
in population of
2002 parametric
models.

Figure 20:
Distribution of
model dimensionality
in population of
2002 parametric
models.

81

models were uploaded to the forum in the proprietary .ghx file format.

I reverse engineered this format and wrote a script that extracted the

parametric relationships from each file and parsed them into a directed

acyclic graph. Thirty-nine models were excluded in this process, either

because the file was corrupted or because the model only contained

one node (which distorted measurements like cyclomatic complexity).

The graphs of the remaining 2002 models were then each evaluated with

the previously discussed quantitative metrics. The measurements were

then exported to an Excel spreadsheet ready for the statistical analysis.

In the analysis I have favoured using the median since the mean is often

distorted by a few large outliers. Each of the key quantitative metrics is

discussed below.

Size

The sizes of the 2002 sampled Grasshopper models vary by a number of

orders of magnitude; the smallest model contains just two nodes while the

largest model contains 2207 nodes (fig. 22). The distribution of sizes has

a positive skew (fig. 19) with the median model size being twenty-three

nodes. I suspect the skew is partly because many of the models uploaded

to the Grasshopper forum are snippets of larger models. The median may

therefore be slightly higher in practice. Even with a slightly higher median,

Model-1945
Nodes:	 2207
Edges:	 2544
Inputs:	 1140
Outputs:	 89
Complexity:	 1566

Figure 22: Model-1945,
the largest and most
complicated model in
the sample. With over
one thousand inputs,
changing any part of
the model is a guessing
game. I have written
previously (Davis 2011b)
about how complexity
can be reduced in
this particular model
by refactoring the
duplicated elements
and condensing the
inputs into just twenty
critical factors.

82

Rank % nodes Name Function

1 12.6 Number Slider Select numeric value

2 7.4 Panel Read/write text

3 4.8 List Item Select item in list

4 2.5 Point Import point

5 2.4 Curve Import curve

6 2.3 Line Import line

7 2.3 Move Move geometry

8 1.8 Scribble Draw on graph

9 1.7 Series Create series of numbers

10 1.6 Point XYZ Create a point

the Grasshopper models (including the three models that contain more

than one thousand nodes) are very modest compared to those seen in the

context of software engineering.

Given the numbers of nodes in a model, it is telling to see the typical

function of these nodes. I took the 93,530 nodes contained within the

2002 Grasshopper models and ranked them based on function (the top

ten are shown in figure 23). The most commonly used node was Number

Slider [1], which is a user interface widget for inputting numeric values.

Two more interface widgets are also feature highly on the list: Panel [2],

which allows users to write and read textual data; and Scribble [8], which

lets users explain a DAG by adding text. Also highly ranked were two nodes

for managing data arrays: List item [3] and Series [9]. The fourth, fifth, and

sixth most popular nodes are all ways of inputting geometry and managing

the flow of data. The most popular node with a geometric function is Move

[7], which is followed by Point XYZ [10]. In fact, only six of the twenty-

five most popular nodes are geometric operations. This demonstrates

that parametric modelling, at least within Grasshopper, is as much about

inputting data, managing data, and organising the graph as it is about

modelling geometry.

Figure 23: Table of the
most commonly used
node types. These ten
node types account for
40% of the 93,530 nodes
contained within the
2002 sampled models.

Model-660
Nodes:	 12
Edges:	 12
Inputs:	 1
Outputs:	 2
Complexity:	 3

Model-1983
Nodes:	 12
Edges:	 12
Inputs:	 2
Outputs:	 1
Complexity:	 3

Model-2015
Nodes:	 11
Edges:	 12
Inputs:	 1
Outputs:	 1
Complexity:	 3

Figure 24: A comparison of models with different cyclomatic complexities. All six models
are of a similar size and fairly representative of other models with equivalent complexities.
This page: three simple models each with a cyclomatic complexity of three. Facing page:
three slightly more complicated models with a cyclomatic complexity of either nine or ten.

Model-1913
Nodes:	 12
Edges:	 16
Inputs:	 4
Outputs:	 2
Complexity:	 10

Model-313
Nodes:	 11
Edges:	 15
Inputs:	 4
Outputs:	 2
Complexity:	 10

Model-1860
Nodes:	 10
Edges:	 13
Inputs:	 4
Outputs:	 2
Complexity:	 9

Dimensionality (inputs)

1 10 30 100 1000
Model Size

100

10

1

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

1 10 100 1000

100

10

1

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

Outputs

Figure 25: Model
complexity plotted
against size for 2002
parametric models.
The distribution shows
a strong correlation
between size and
complexity (r=0.98). The
graph also shows that
for models with more
than thirty nodes it is
inevitable they have a
cyclomatic complexity
greater than ten.

Figure 26:

 Model complexity
plotted against
dimensionality for 2002
parametric models.

 Model complexity
plotted against the
number of outputs for
2002 parametric models.

The distribution shows
that the number of
model outputs has little
bearing on complexity
(r=0.71) since for any
given number of outputs
there are a range of
complexities associated
(the vertical spread of
red dots). In comparison,
the number of inputs
has a stronger (r=0.91)
relationship to model
complexity (the blue
dots are more linear and
less vertically spread).

86

Dimensionality (inputs)

1 10 30 100 1000
Model Size

100

10

1

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

1 10 100 1000

100

10

1

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

Outputs

Dimensionality

The vast majority of models have a similar dimensionally; 75% possess

between one and eleven inputs with the median being six inputs (fig. 20).

Seventeen outliers have more than one hundred inputs and the most

extreme model contains 1140 inputs. When examining the models with a

high dimensionality, it is strikingly difficult to understand what each input

does and even more difficult to change the inputs meaningfully en masse

(often the only way is to guess and check). I suspect the comparatively

low dimensionality shown in the vast majority of models may be because

designers can only comfortably manipulate a few parameters at a time.

Therefore, while parameters are a key component of parametric modelling

(some would say the defining component: see chap. 2.1) the majority of

designers use parameters sparingly in their models.

Cyclomatic Complexity

There is a high variance in the cyclomatic complexity of the sampled

models. The median complexity is thirteen (fig. 21) but the range extends

from simple models with a complexity of just one, to extremely complex

models with a complexity of 1566 (fig. 22). Within this variance, 60% of

models have a complexity greater than ten – the limit McCabe (1976, 314)

suggested. The differences between complex and simple models are visually

apparent in figure 24 where the two extremes are displayed side-by-side.

In figure 24, the simple models have orderly chains of commands while

the models with a higher cyclomatic complexity have interwoven lines

of influence that obfuscate the relationships between nodes. This seems

to indicate that cyclomatic complexity is effective in classifying the

complexity of a parametric model.

A model’s cyclomatic complexity and size are strongly correlated (r=0.98;2

fig. 25). This correlation is significant because it indicates that while a

parametric model can theoretically be both large and simple, in actuality,

large models tend to be complex (all the models with more than thirty

nodes had a cyclomatic complexity greater than McCabe’s limit of ten). A

similar correlation exists in software engineering. One such example is van

der Meulen and Revilla’s (2007, 206) survey of fifty-nine textual programs

that found cyclomatic complexity and LOC to have a correlation of r=0.95.

2	 r is Pearson’s coefficient. A value of 1 indicates that two variables are perfectly correlated
(all sampled points fall on a line), a value of 0 indicates that two variables are not not
correlated in any way (one does not predict the other), and a negative value indicates
an inverse correlation.

87

This correlation suggests that complexity is an inevitable by-product of

size in both software engineering and parametric modelling. Similar

relationships exist for a model’s dimensionality (r=0.91) and outputs

(r=0.71), although neither correlates with complexity to the same degree

as a model’s size (fig. 25 & 26).

Learning from Quantitative Data

This study is an important first step towards understanding the properties

and variations of a typical parametric model. The 2002 Grasshopper models

surveyed show that parametric models are generally small and complex.

The average model contains twenty-three nodes and even the largest

models, with just over one thousand nodes, are modest in the context

of software engineering. The size of the model is highly correlated with

the model’s complexity, which tends to be very high overall. While one

may intuitively expect that the majority of a parametric model consists

of parameters and geometry, this study shows that organising the graph

and managing data are often the most common components of parametric

models created in Grasshopper. Parameters tend to be used surprisingly

sparingly, with the vast majority of models only containing between one

and eleven parameters.

Another important outcome from this survey is the validation of the

quantitative metrics. The study demonstrates that nodes are a good proxy

for a model’s size and that the dimensionality can reveal unintuitive insights

regarding the use of parameters in parametric models. Furthermore, the

cyclomatic complexity seems to fairly accurately differentiate between

simple and complex models. However, despite the validation of these

quantitative metrics, they still only tell a narrow part of a model’s story; a

story that can be further triangulated with qualitative measures.

88

4.4	 Qualitative Flexibility

Many aspects of parametric flexibility elude quantitative measurement.

While it is useful to know the size of a model or the complexity of a

model, by themselves, these measurements give an incomplete picture.

Bertrand Meyer (1997, 3) argues, in his seminal book Object-Oriented

Software Construction, “software quality is best described as a combination

of several factors.” Meyer (1997, chap. 1) spends the first chapter of his

book expounding the following ten factors of “software quality”:

1.	 Correctness: ability of software products to perform their exact tasks,

as defined by their specification.

2.	 Robustness: the ability of software systems to react appropriately to

abnormal conditions.

3.	 Extendability: the ease of adapting software products to changes

of specification.

4.	 Reusability: the ability of software elements to serve for the

construction of many different applications.

5.	 Compatibility: the ease of combining software elements with others.

6.	 Efficiency: the ability of a software system to place as few demands as

possible on hardware resources.

7.	 Portability: the ease of transferring software products to various

hardware and software environments.

8.	 Ease of use: the ease with which people of various backgrounds and

qualifications can learn to use software products and apply them to

solve problems.

9.	 Functionality: the extent of possibilities provided by a system.

10.	Timelessness: the ability of a software system to be released when or

before its users want it.

While other authors have constructed similar lists of software quality

(Meyer 1997, 19-20), Meyer’s list holds significant cachet in software

engineering because it belongs to one of the most cited books in

computer science.3 There are notable correlations between Meyer’s list

and the ISO/IEC standard for Software Product Quality (ISO 2000), with

Meyer’s efficiency, portability, ease of use, and functionality being word-

for-word identical to the ISO categories. In this thesis I take the factors

3	 CiteSeer (2012) say Object-Oriented Software Construction is the sixty-second most cited
work in their database of over two million computer science papers and books.

89

Meyer identifies as being crucial to software quality and I use them as a

structure for qualitative evaluations of parametric models. In particular,

I make reference to Meyer’s concepts of correctness [1], extendability [3],

reusability [4], efficiency [6], ease of use [8], and functionality [9], which

I will now briefly explain in more detail.

Correctness

Correctness concerns whether software does what is expected. In some

circumstances correctness is obvious; if you create a parametric model to

draw a cube, the model is correct if it draws one. But in most circumstances

correctness is non-trivial since it can be difficult to determine what is

expected and to ensure this happens through a range of input parameter

values. Software engineers have developed a range of methods for

ascertaining whether software is correct – unit testing being one notable

example. While I suspect architects would benefit from adopting these

practices, this is a large area of research outside the scope of my thesis

(as discussed in chapter 3). For the remainder of this thesis I have used

correctness to denote that a parametric model is free from any major

defects; it is not creating spheres when it should be creating cubes.

Extendability

Extendability is essentially a synonym for flexibility; the ease with which

software adapts to changes. Meyer (1997, 7) says extendability correlates

with size, since “for small programs change is usually not a difficult issue;

but as software grows bigger, it becomes harder and harder to adapt.”

This notion corresponds to what other authors have written about the

software crisis (see chap. 3.1) and it corresponds to the relationships

between software size and cyclomatic complexity that I have empirically

shown. Meyer (1997, 7) goes on to argue that extendability can be

improved by ensuring the code has a “simple architecture,” which can be

achieved by structuring the code with “autonomous modules.” While I

explore extendability throughout this thesis, I pay particular attention to

the structure of parametric models in chapter 6.

Reusability

Reusability pertains to how easily code can be shared, either in part or

in whole. Meyer (1997, 7) notes that “reusability has become a pressing

concern” of software engineers. As I have shown in chapter 2.3, the

reusability of parametric models is also a concern of many architects.

90

Efficiency

Efficiency describes how much load a program places on hardware.

This is particularly pertinent to architects because a program’s efficiency

helps determine its latency, which, in turn, affects change blindness (see

chap. 2.3). In extreme cases the model’s efficiency may even determine

its viability, since certain geometric calculations are so computationally

demanding that inefficient models can slow them to the point of

impracticality. However, Meyer (1997, 9) tells software engineers “do

not worry how fast it is unless it is also right” and warns, “extreme

optimizations may make the software so specialized as to be unfit for

change and reuse.” Thus, efficiency can be important but it needs to be

balanced against other attributes like correctness and reusability.

Ease of Use

Ease of use is fairly self-explanatory. For architects, ease of use applies

to both the modelling environment and the model. A modelling

environment’s ease of use concerns things like user interface and

modelling workflow. A designer familiar with a modelling environment

will tend to find it easier to use, which impacts how fast they can construct

models (construction time) and how competently they can make changes

(modification time). In addition to the modelling environment being easy

to use, the model itself needs to be easy to use. I have spoken previously

about the importance of dimensionality and complexity when it comes to

understanding and changing a model. Meyer (1997, 11) echoes this point,

saying a “well thought-out structure, will tend to be easier to learn and use

than a messy one.”

Functionality

Functionality to Meyer (1997, 12) denotes “the extent of possibilities

provided by a system.” Like ease of use, functionality is applicable to both

the modelling environment and the model. The key areas of functionality

in a modelling environment include the types of geometry permissible,

the types of relationships permissible, and the method of expressing

relationships. Modelling operations that are easy to implement in one

environment may be very difficult (or impossible) in another due to

variations in functionality. Likewise, changes easily permissible in one

environment may be challenging in another. Therefore, the functionality

of a modelling environment helps determine the functionality of the

parametric model. This is a determination that often comes early in the

91

project since changing the modelling environment mid-project normally

means starting again.

Using Qualitative Metrics

All of the qualitative metrics require some form of consideration and

judgment in their application. Some have established protocols of

observation – for example, there are well-researched ways to conduct

usability studies in order to analyse ease of use. Other qualitative

assessments can be logically deduced through comparisons – for

example, the functionality of a modelling environment can be evaluated

by comparing its features to those of other environments. But other

attributes, like extendability, fall upon expert judgment to analyse.

None of these are definitive measurements, for even the quantitative

measurements are distorted by what they cannot measure. However, the

qualitative measurement do provide a vocabulary of attributes to begin

capturing the qualities of a parametric model.

92

4.5	 Conclusion

Meyer (1997, 15) stresses that software metrics often conflict. Each metric

offers one perspective, and improvements in one perspective may have

negative consequences in another. For example, making a model more

efficient may make it less extendible, and making a model more reusable

may harm the latency. Furthermore, measured improvements may not

necessarily manifest in improved flexibility since flexibility is partly a

product of chance and circumstance; an apparently flexible model (one that

is correct, easy to use, and with a low cyclomatic complexity) can stiffen

and break whilst a seemingly inflexible model may make the same change

effortlessly. This uncertainty makes any single measure of flexibility – at

best – an estimation of future performance.

To help mitigate the biases of any single metric, I plan to aggregate a

triangulated perspective of the case studies using a variety of metrics.

In this chapter I have discussed a range of metrics applicable to parametric

modelling: from quantitative metrics to measure time, size, and complexity;

to qualitative metrics to begin discussing qualities like correctness,

functionality, and reusability. By gathering these measurements together

in this chapter I have begun to articulate a vocabulary for discussing

parametric models; a vocabulary that goes beyond the current binaries

of failure and success. Using parts of this vocabulary I have been able

to analyse, for the first time, a large collection of parametric models in

order to get a sense of the complexity, composition, and size of a typical

parametric model. This demonstrates the viability of quantitatively

measuring qualities like cyclomatic complexity but also demonstrates why

quantitative metrics alone are not enough to observe the case studies.

In addition to the suite of metrics, this chapter has also identified three

case studies to test various aspects of the software engineering body of

knowledge. The case studies have been selected not because the cases are

necessarily representative of challenges architects typically encounter, but

because cases provide the best opportunity to learn about these challenges.

Each of the following three chapters contains one of these case studies and

makes use of a variety of the metrics discussed in this chapter.

93

Case studies

The following three chapters document a case study each. The case studies

take the software engineering concepts discussed in chapter 3.2 and apply

them to architecture projects where their performance is measured using

the research instruments discussed in chapter 4.

		 Case A

Chapter:		 5

Main Subject:	 Logic Programming

Main Project:	 Realignment of the Sagrada Família frontons

		 Case B

Chapter:		 6

Main Subject:	 Structured Programming

Main Project:	 Designing Dermoid

		 Case C

Chapter:		 7

Main Subject:	 Interactive Programming

Main Project:	 Responsive Acoustic Surfaces & The FabPod

94

5	 Case A: Logic
Programming

Project: Realignment of the Sagrada Família frontons.

Location: Barcelona, Spain.

Project participants: Daniel Davis, Mark Burry, and the Basílica i Temple

Expiatori de la Sagrada Família design office.

Related publication:

Davis, Daniel, Jane Burry, and Mark Burry. 2011. “The Flexibility

of Logic Programming.” In Circuit Bending, Breaking and

Mending: Proceedings of the 16th International Conference on

Computer Aided Architectural Design Research in Asia, edited

by Christiane Herr, Ning Gu, Stanislav Roudavski, and

Marc Schnabel, 29–38. Newcastle, Australia: The University

of Newcastle.

95

5.1	 Introduction

High above the main crossing of Basílica de la Sagrada Família, Antoni

Gaudí planned a tall central tower dedicated to Jesus Christ (fig. 27).

The tower marks the basilica’s apex of 170 metres and the culmination of

a design that has been in development for over one hundred years. Today,

almost eighty-five years after Gaudí’s death in 1926, the team of architects

continuing his work is preparing to construct the central tower.

At the base of the tower sit three matching gabled windows, each seventeen

metres high (fig. 28). The stone head to these windows is called a fronton

by the project team (fronton being Catalan for gable). The fronton design,

Figure 27: Lluís Bonet
i Garí’s interpretation
(circa 1945) of what
the Sagrada Família
would look like when
completed. The tall
central tower capped by
a cross is dedicated to
Jesus Christ.

96

Figure 28: A massing
model of the central
tower with the frontons
highlighted in red.

97

0 1 2M

Figure 29: The original
fronton model (red)
overlaid with the
corrected model (grey).
The slight distortions in
the original model cause
some parts to disappear
behind the corrected
model while other parts
push out and envelop the
corrected model.

Figure 30:

 Plan of original
fronton model.

 Plan of corrected
model. The two plans
deviate 6mm on average.

98

0 1 2M

like everything else on the church, has stretched over a period of years. The

progression of software in this time has seen the digital fronton model pass

from one CAD version to the next. At some stage during this process, the

parametric relationships in the fronton model were removed and the model

became explicit geometry. In 2010, as the project team were preparing the

fronton’s construction documentation, they came across a curious problem

with the model: passing the model between software had caused slight

distortions. With the parametric relationships removed, fronton faces that

should have been planar contained faint curves, lines that should have

been orthogonal were a couple of degrees off, and geometry that should

have been proportional was just a touch inconsistent (fig. 29 & 30). None

of these distortions were apparent at first glance and on a more routine

project they probably would not be of concern. However, on a project as

meticulous as the Sagrada Família – where the design has germinated for

decades – it was vitally important to remove any imperfections, or at least

get them within the tight tolerances of the seven-axis robot scheduled

to mill the stone. My task was to straighten the explicit geometry in

the fronton model by converting it back into a parametric model and

reasserting the original parametric relationships.

The realignment of the frontons presents a unique parametric modelling

case study. Besides contributing to one of the earliest examples of

parametric architecture, the project demands an extraordinary level of

precision, while the ambiguity of what constitutes straightened requires

collaboration with team members in Melbourne and Barcelona. This case

study is not necessarily representative of typical parametric architecture

projects but, as I discussed in chapter 4.1, the project’s unique circumstances

offer what Robert Stake (2005, 451) calls “the opportunity to learn.” In this

chapter I observe how the demands of the fronton realignment manifest

within two parametric models. In particular, I examine how the language

paradigm of the parametric model affects its behaviour (following on

from chapter 3.2, where I noted most parametric models are based on a

narrow range of language paradigms). I begin this chapter by discussing

the taxonomy of possible language paradigms and identifying how the

rarely used logic programming paradigm may be applicable to parametric

modelling. I then twice realign the frontons, once with a conventional

dataflow parametric model, and once with a parametric model based on

logic programming. The differences between these two language paradigms

form the discussion of this chapter.

99

Figure 31: Van Roy’s
photograph of the
Sagrada Família on
the cover of Concepts,
Techniques, and Models of
Computer Programming
(Van Roy and Haridi’s
2004). The Japanese
edition uses a slightly
different photograph of
the Sagrada Família.

5.2	 Programming Paradigms

The Sagrada Família graces the cover (fig. 31) of Peter Van Roy and

Seif Haridi’s (2004) seminal book on programming languages entitled

Concepts, Techniques, and Models of Computer Programming. Van Roy took

the photograph and chose it for the cover because “the still unfinished

Expiatory Temple of the Sagrada Família in Barcelona is a metaphor for

programming” (Van Roy, n.d.). Van Roy and Haridi never foresaw, however,

that the opposite maybe true, that the programming paradigms they

discuss in their book could help designers of the church on its cover. In the

preface Van Roy and Haridi (2004, xx) allude to another architect, Mies van

der Rohe, in a section about programming paradigms titled “more is not

better (or worse), just different.” A programming paradigm in this context

is the set of underlying principles that shape the style of a programming

language. For Van Roy and Haridi, these styles are not better nor worse,

just different to one another. It is this difference that I consider in relation

to the parametric models of the Sagrada Família.

Programming paradigms are roughly divided by Van Roy and Haridi (2004)

as well as others like Appleby and VandeKopple (1997) into imperative

paradigms or declarative paradigms (fig. 32). Imperative languages

describe a sequence of actions for the computer to perform – much like

imperative verbs in the English language. In contrast, declarative languages

“define the what (the results we want to achieve) without explaining the

how (the algorithms needed to achieve the results)” (Van Roy and Haridi

100

2004, 114). Imperative and declarative languages can be further classified

into more specific paradigmatic subcategories, as shown in figure 32. Most

programming languages are based on at least one of these subcategories,

and many spread out to embody multiple paradigms within the one

language – more is not better (or worse).

As discussed in chapter 3.2, the languages favoured by designers tend

to occupy a narrow range of possible paradigms (fig. 32). The major

textual CAD programming languages are all predominantly imperative1

with a bias towards procedural imperativeness. This is not surprising

considering that the world’s five most popular programming languages

on the TIOBE (2012) index are also predominantly imperative2 (although

perhaps more spread out on the imperative spectrum). In contrast, visual

programming languages tend towards declarativeness. The major visual

CAD programming languages all reside in a very narrow subsection of

1	 These include: 3dsMax: Maxscript; Archicad: GDL; Digital Project: Visual Basic; Maya:
Maya Embedded Language; Processing: Java; Revit: Visual Basic & Python; Rhino: Visual
Basic & Python; Sketchup: Ruby.

2	 As of May 2012 the worlds five most popular programming languages, as measured by
TIOBE (2012), are: C, Java, C++, Objective-C, and C#.

Procedural Object
Oriented

Parallel
Processing

FunctionalLogic Database

Imperative Declarative

Paradigms

Dataflow

Grasshopper
GC

Houdini
MaxMsp

Maxscript

AutoCAD .NET
MEL

Processing
Revit Python
Rhino Python

GDL
Rhino VB

Digital Project VB

Figure 32: The
programming
languages architects use
categorised by Appleby
and VandeKopple’s
(1997, xiv) taxonomy of
programming paradigms.

The two paradigms
explored in this
case study.

101

declarative programming known as dataflow programming.3 In this chapter

I compare two declarative paradigms – dataflow programming and logic

programming – as a means to construct the parametric models of the

Sagrada Família frontons.

5.3	 Challenges of Dataflow

In the introduction to Data Flow Computing, John Sharp (1992, 3)

defines a dataflow program as “one in which the ordering of operations

is not specified by the programmer, but that is implied by the data

interdependencies.” In other words, a dataflow language describes the

connections between computational operations, which is different to the

imperative approach of listing operations in the order they should occur.

When a dataflow program is run, the computer infers the precise order of

operations from the stated connections between operations.

The quintessential example of a dataflow program is a spreadsheet.

The user of a spreadsheet specifies how cells connect and how cells should

process data but leaves the computer to decide the precise order in

which cells get updated. The same principle applies to certain parametric

modelling software, like Digital Project. Users of this software specify a

network of connections between geometric operations while the computer

manages the exact sequencing and execution of these operations.

Many visual programming languages operate on a similar principle since

the connections between operations can be represented using a type of

flow-chart know as a Directed Acyclic Graph (DAG). The two components

of a DAG are nodes and directed edges (fig. 33). In a visual program a

node represents an operation and a directed edge

represents a connection (a flow of data between two

operations), which is how the visual programming

environments used by architects (Grasshopper,

GenerativeComponents, and Houdini) represent

dataflow programs.4

3	 These include: Grasshopper; GenerativeComponents; Houdini; and MaxMsp.
4	 I discuss, in chapter 7, an alternative way to represent a dataflow program textually

rather than visually.

A B

Node (parent).
Edge.
Node (child).

Figure 33: The parts of a DAG.

102

A critical component of dataflow programming is that the flow of data has

a direction specified by the programmer. In defining the direction of data,

the source of data is termed the parent and the receiver of data is termed

the child (fig. 33). The direction has important implications since the

programmer is not just specifying that operations are connected but also

necessarily giving a hierarchy to these connections. As a consequence, if the

programmer reverses the flow of data – turning children into parents and

parents into children – they risk disrupting the program’s structure. For

example, the dataflow program in figure 34 generates a line between two

parent points. If the data in this model is reversed (a point becomes a child

of the line) the change requires both deleting nodes and adding new nodes

(fig. 35). Even though the changes introduce no new geometry, they agitate

the hierarchy so much that starting over would be as easy as changing the

model in figure 34 to match the model in figure 35. These disruptions to

the hierarchy would be avoidable if the designer did not need to specify the

direction of connections and instead only needed to specify that two things

are connected. In this case study I consider whether logic programming

can help remove the need to specify the direction between operations in

much the same way dataflow programming removes the need to specify

an order of operations.

Point

Point Line

Point

Vect.

Point Line Point

Generates

Generates

Figure 33: The parts of a DAG.

Figure 35: Modifications
to the DAG from
figure 34. The geometry
is the same but the
connections have been
changed: one of the
points is now a child of
the line. In the geometric
model, the child point
can no longer be moved
directly since its location
now depends on the
line’s position (the
parent of the point).
While the geometry is
the same as figure 34,
the change in hierarchy
requires adding and
removing a number
of nodes.

Figure 34: The
relationship between a
DAG and the geometry
it generates. In the DAG
the line is a child of the
two points, accordingly,
the line’s geometry
depends entirely on the
location of the points.
Moving the geometry of
either point would also
move the line.

 Existing nodes.

 New nodes.

 Deleted nodes (from figure 34).

103

5.4	 Logic Programming

Logic programming, like dataflow programming, fits into the declarative

branch of programming paradigms (fig. 32). Defined by Sterling and

Shapiro (1994, 9), the first part of “a logic program is a set of axioms, or

rules, defining relations between objects.” These relations do not specify

flows of data but rather express, in first order logic, statements of fact. For

example, an axiom might be: A cat is an animal. The second part of a

logic program is an interpreter that reads the axioms and logically deduces

the consequences (Sterling and Shapiro 1994, 9).5 Using the above axiom,

the interpreter might be asked what is an animal? to which it would

deduce: cat.

At the genesis of logic programming, in the late 1960s and early 1970s,

many expected logic programming’s formalisation of human reasoning

to push humanity beyond its cognitive limitations (limitations that had

ostensibly brought about events like software crisis). Robert Kowalski

(1998) recalls his contemporaries during this period employing logic

programming for ambitiously titled projects involving “natural language

question-answering” (38) and “automated theorem proving” (39). The

initial developments were promising with researchers discovering various

ways to get computers to seemingly reason and respond to a series of

questions, even if the questions were always confined to small problem

domains (Hewitt 2009). The hope was that if a computer could answer a

simple question like how many pyramids are in the blue box? then it would

be possible to get a computer to answer a more difficult question like What

does “cuantas pyramides se encuentran dentro de la caja azul” mean? But, as

I have discussed in chapter 3, systems addressing small problems – be

they computer programs or parametric models – do not always scale to

address larger problems. The initial interest in logic programming waned as

success with small, well-defined problems failed to bring about widespread

success with larger problems. Today the most common logic programming

5	 On the surface, there may appear to be many examples of logic programming used
in CAD. For example, Sketchpad (Sutherland 1963), has a geometric constraint solver
that allows users to define axioms between geometry. However, Sketchpad does not
satisfy the definition of logic programming since the axioms are interpreted using
numeric algorithms and an early form of hill climbing rather than through logical
deduction (Sutherland 1963, 115-19). The logical deduction that forms the basis for
logic programming was not invented until six years after Sketchpad.

104

language – Prolog – only ranks thirty-sixth on the TIOBE (2012) index of

popular programming languages. Nevertheless, logic programming still

finds niche applications in expert reasoning – particularly expert reasoning

about relationships (for instance, IBM’s Jeopardy winning computer,

Watson, was partly based on Prolog [Lally and Fodor 2011]).

In the architecture industry, logic programming followed a similar arc,

albeit a few years behind what was happening in software engineering.

Architectural researchers took the work done on spatial logic programming

and enthusiastically applied it to a favourite problem of the time: room

layout (Keller 2006). A paper typical of the period is Peter Swinsons’ (1982)

optimistically named Logic Programming: A Computing Tool for the Architect

of the Future. In this paper Swinson (1982, 104) demonstrates how Prolog

can solve four different layout problems before concluding “this new way

of programming does indeed hold much promise for the future” (a similar

method is used by Márkusz [1982]). A flurry of interest followed in the

1980s.6 In 1984, Gonzalez et al. demonstrated two-dimensional drafting

using logic programming, which they found “more concise, more reliable,

and clearer” as well as “more efficient” than imperative programming

(Gonzalez et al. 1984, 74). Further examples of two-dimensional shape

drawing were given by Brüderlin (1985) and subsequently Helm and

Marriott (1986). A more comprehensive attempt to generate three-

dimensional models was made by Robert Woodbury (1990) using the

ASCEND language, which is not strictly a logic programming language

although it shares many similarities. The zenith for logic programming in

architecture was arguably reached the same year with the publication of

William Mitchell’s (1990) The Logic of Architecture.

Despite The Logic of Architecture’s success, it marks the beginning of the

end. While Mitchell was able to apply his ideas retrospectively to Palladian

villas, he never tested them on real architecture projects. Indeed, none

of the papers I have referenced (or that I can find) discuss using logic

programming on real architecture projects – even though many of them,

like Swinson, were making confident proclamations that logic programming

would become the “computing tool for the architect of the future” (Swinson

1982). Much like the software engineers that came before them, these

researchers all tested logic programming with small, idealised problems

6	 For a complete history see: Fudos 1995.

105

assuming the success of these small systems were representative of future

successes at larger scales. The initial interest in logic programming waned

(like it had done in software engineering a few years earlier) as success with

small, well-defined problems failed to bring about widespread success with

larger problems. Nevertheless, there are still a couple of recent examples

of logic programming being used by researchers (still on small, idealised

problems) including Martin and Martin’s PolyFormes tool (1999) and

Makris et al. MultiCAD (2006). However, in contrast to the widespread

imperative programming paradigm used by architects, logic programming

never quite became the computing tool for the architect of the future. In

fact, I can find no example of logic programming ever being used on a real

architecture project.

The following case study differs from prior logic programming research

in three important ways. Firstly, it investigates logic programming in

the context of a real design problem from the Sagrada Família rather

than discussing logic programming theoretically applied to an idealised

problem. Secondly, it focuses on deducing the hierarchy of relationships

for a parametric model instead of directly generating geometry, or laying

out rooms, or drawing Palladian villas. Finally, this research does not aspire

to develop the computing tool for the architect of the future; instead it

aims to observe how programming paradigms influence the flexibility of

parametric models.

106

My logic programming interpreter uses a three-stage process to derive

a parametric model automatically from a set of axioms. These stages are

illustrated in figure 36. The first stage is to read the text file containing the

axioms. In the second stage, the axioms are parsed into an undirected graph

(using rules I will explain shortly). At the final stage, the interpreter uses

forward-chaining to deduce the directness of the graph, which produces

the DAG of a parametric model satisfying the initial axioms.

5.5	 Logic Programming

Parametric Relations

As part of my research I developed a logic programming language for

generating parametric models. A designer using the language can specify

connections between operations, which are then used by an interpreter to

derive the flow of data without the designer needing to specify a hierarchy

(like they would in a dataflow language). I elected to develop my own

logic programming interpreter in C# rather than using an existing logic

programming implementation. This allowed me to link the interpreter

directly to a parametric engine I had already built on-top of Rhino 4’s

geometric API (an engine reused for the case study in chapter 7).

Type(a,point)
Type(b,point)
Type(c,line)
Connect(a,c)
Connect(b,c)
Construct(line,point,vector)
Construct(line,point,point)
Construct(point,num,num,num)

A
Point

A
Point

C
Line

C
Line

B
Point

B
Point

1. Axioms 2. Undirected
Graph

3. Directed
GraphParse Forward-

chaining

Figure 36: The major
stages involving in
deducing a parametric
model to satisfy a set
of textual axioms. The
dashed lines show how
the axioms generate
particular parts of
the graphs in the
various stages.

107

There are three types of axioms permitted in the language:

Axiom Type 1: Geometric

A geometric axiom defines a geometric entity’s unique name and geometry

type. For example, a line with the name of C, is defined by the axiom:

type(C,line).

Axiom Type 2: Connection

A connection axiom establishes a connection between two geometric

entities. For example, to connect line C to point B, the axiom would be:

connect(B,C). Connection axioms do not define the direction of the

connection, they only state that two geometric entities are related.

Axiom Type 3: Construction

A construction axiom describes a combination of parents that define a

particular geometry type. For example, a line can be defined by two parent

points, which is expressed with the axiom: construct(line,point,point).

Any particular geometry type can have multiple construction axioms.

For example, a line may also be defined by a point and a vector:

construct(line,point,vector). Using forward-chaining, the

interpreter selects the most appropriate construction axiom for a given

situation. In figure 36, the forward-chaining algorithm has inferred that

node C, a type of line, must be defined by two parent points. To satisfy

this relationship, the interpreter organises the undirected graph into a

hierarchy so that line C becomes the child of the two points (A & B). The

following page explains the three rules used to infer the most appropriate

construction axioms.

108

Inference 1: Asymmetric constructors

The construction axioms list the type of geometry that can act as the

parent for any given type of node. If two nodes are connected, and the

first node has a construction axiom allowing the second node to be its

parent, and the second node does not have any construction axioms that

allow the first node to be its parent, then the first node must necessarily

be the parent of the second node.

A
Point

C
Line

Construct(line,point,vector)
Construct(line,point,point)

Construct(point,num,num,num)
Construct(point,vector)

A
Vector

B
Point

C
Vector

Construct(point,num,num,num)
Construct(point,vector)

A
Vector

B
Point

C
Vector

Construct(point,vector)

Figure 37: A must be
the parent of C, since
none of the construction
axioms for A require a
line as a parent, whereas
both the construction
axioms of C require a
point as a parent.

A
Point

C
Line

Construct(line,point,vector)
Construct(line,point,point)

Construct(point,num,num,num)
Construct(point,vector)

A
Vector

B
Point

C
Vector

Construct(point,num,num,num)
Construct(point,vector)

A
Vector

B
Point

C
Vector

Construct(point,vector)

Figure 38: The first
construction axiom
requires B to have
three parents that are
numbers. Since B is
not connected to any
numbers, it will never be
able to fulfil this axiom
and therefore the axiom
can be eliminated. The
second axiom is still
possible, which means
one of the vectors much
be a parent to B.

A
Point

C
Line

Construct(line,point,vector)
Construct(line,point,point)

Construct(point,num,num,num)
Construct(point,vector)

A
Vector

B
Point

C
Vector

Construct(point,num,num,num)
Construct(point,vector)

A
Vector

B
Point

C
Vector

Construct(point,vector)

Figure 39: If A is
B’s parent, then B’s
construction axiom is
fulfilled and it cannot
have anymore parents.
Accordingly, all the
remaining undirected
connections must flow
away from B, and thus C
is a child of B.

Inference 2: Constructor elimination

If a node has multiple construction axioms, some axioms can be eliminated

if the node is not connected to the right combination of node types to fulfil

a particular construction axiom. Eliminating constructor axioms makes it

more likely to find asymmetric constructors.

Inference 3: Constructor definition

If a node has all the required parents to fulfil a construction axiom, then

it does not need any more parents and all the remaining nodes connected

through undirected connections must be children. Once this rule becomes

relevant the directedness normally cascades through the graph as large

numbers of connections become directed.

109

Ideally these three rules are enough to deduce the entire flow of the graph.

On occasion the axioms will define an over-constrained graph, producing

a situation where two nodes are connected but neither is a permissible

parent of the other. In this case the interpreter first looks to see if the

addition of numerical nodes will allow progress past this impasse. If not,

the user is asked to resolve the axiom conflicts.

A designer using this logic programming system only needs to define

connections between geometric entities, which leaves the interpreter

to infer the direction of the connections. Figure 40 shows how axioms

transform into a parametric model and how changes to the axioms

automatically result in new dataflows. The example in figure 40 is identical

to the earlier dataflow example in figure 35 except, unlike the dataflow

example, the changes to the parametric model’s hierarchy are managed

invisibly by the interpreter; the designer adds a few axioms and the new

dataflow is automatically derived by the interpreter. The following section

describes how these changes come to impact real architecture projects.

Type(a,point)
Type(b,point)
Type(c,line)
Connect(a,c)
Connect(b,c)
Construct(line,point,vector)
Construct(line,point,point)
Construct(point,num,num,num)

A
Point

A
Point

C
Line

C
Line

B
Point

B
Point

Type(a,point)
Type(b,point)
Type(c,line)
Connect(a,c)
Connect(b,c)
Construct(line,point,vector)
Construct(line,point,point)
Construct(point,num,num,num)

//New Axioms:
Type(d,vector)
Connect(c,d)
Construct(point,line)
Construct(vector,num,num,num)

A
Point

A
Point

C
Line

C
Line

B
Point

D
Vect.

1. Axioms 2. Undirected
Graph

3. Directed
GraphParse Forward-

chaining

B
Point

D
Vect.

Figure 40: An example
of how changes to a
set of axioms translate
into changes within
a parametric model.
Top: The axioms and
resulting parametric
model from figure 36.
Bottom: The inclusion
of new axioms creates
a slightly different
undirected graph which
the forward-chaining
interpreter transforms
into a radically different
parametric model when
compared to the one
above (note that these
changes are the same as
with the dataflow model
in figure 35).

110

Type(a,point)
Type(b,point)
Type(c,line)
Connect(a,c)
Connect(b,c)
Construct(line,point,vector)
Construct(line,point,point)
Construct(point,num,num,num)

A
Point

A
Point

C
Line

C
Line

B
Point

B
Point

Type(a,point)
Type(b,point)
Type(c,line)
Connect(a,c)
Connect(b,c)
Construct(line,point,vector)
Construct(line,point,point)
Construct(point,num,num,num)

//New Axioms:
Type(d,vector)
Connect(c,d)
Construct(point,line)
Construct(vector,num,num,num)

A
Point

A
Point

C
Line

C
Line

B
Point

D
Vect.

1. Axioms 2. Undirected
Graph

3. Directed
GraphParse Forward-

chaining

B
Point

D
Vect.

5.6	 Application to the

Sagrada Família

Every vertex was slightly awry on the Sagrada Família’s fronton model.

This introduced curves to faces that should have been planar, pulled

geometry out of line with important axes, and unsettled the proportions of

the model (fig. 29). In March 2010, I developed a set of parametric models

to realign the vertices of the distorted model. I built these models from

Melbourne, Australia and was guided by discussions with Mark Burry and

the Sagrada Família design office based in Barcelona, Spain.

To understand the impact of a parametric model’s programming paradigm,

I straightened the frontons twice: once with a dataflow language, and

once with a logic programming language. In order to do so, the geometry

of the frontons was first converted into a parametric model in each of

the respective programming paradigms. Once converted, parametric

relationships were introduced to realign the model. These relations ensured

that polygons were regular and that certain groups of vertices were planar,

symmetrical, proportioned, and on an axis. The parametric model was

then flexed so the new geometry matched the original model as closely as

possible.7 The specific process of using dataflow programming and logic

programming was as follows.

Applying Dataflow

The dataflow parametric model contained approximately a thousand

geometric operations that straightened the one hundred and eleven

vertices in the original fronton model. This parametric model was as large

as the largest models analysed in chapter 4.3.8 Due to the anticipated

size of the model, I elected to generate the fronton parametric model in

Digital Project. The geometry was imported into Digital Project where I

introduced parametric relationships to fix the original model’s distortions.

7	 Closeness in this case was measured as both the median distance model vertices moved
and the maximum distance model vertices moved.

8	 Figure 27 & 28 show how the fronton model is only a small component of the Sagrada
Família overall, and a fairly geometrically simple component at that. To have such a
large and detailed architecture project modelled parametrically is quite unusual. And
with parametric models being employed on the Sagrada Família for almost two decades,
I would venture to say that in aggregate the models are likely to be the most extensive
and most complex parametric models ever used in an architecture project.

111

Hopper Fronton pitch

Major Fronton

Minor Fronton Fronton Angle

Figure 41: The key parts
of the Sagrada Família’s
frontons.

Like much of Gaudí’s
architecture, the
frontons consist of
ruled surfaces:

 Planar surfaces.

 Hyperbolic
paraboloids.

 Conic sections.

112

The parameters of the Digital Project model were managed in an Excel

spreadsheet. By changing values in the spreadsheet I could move the new

refined frontons as close as possible to the original geometry. The best

set of parameters I could find reduced the median difference between the

two models to 13mm. I then further refined these values using a genetic

algorithm, which narrowed the median distance to 6mm. Since it was only

the model’s parameters being changed, all the parametric relationships in

the new geometry were maintained during this process.

Applying Logic Programming

The frontons were also straightened with the logic programming technique

I described earlier. The logic programming environment took a series of

axioms describing the frontons’ geometric relationships and then derived

a parametric model to satisfy these relationships. In total, approximately

six hundred axioms were required to generate the parametric model of

the frontons. Almost five hundred axioms were automatically generated.

These included most of the geometric axioms, which could be found by

iterating through all the points, lines, and planes in the original model

to produce axioms like: type(p_127,point) and type(plane_3,plane).

Most of the connection axioms were found using a similar method whereby

vertices from lines or planes that coincided with a point were said to be

connected, which produced axioms like: connect(p_127,plane_3).

The remaining one hundred axioms in the logic programming model were

generated manually. These included the construction axioms, as well as

new geometric axioms to define important planes, axes, polygons, and

vectors. From these axioms the logic programming interpreter generated

a parametric model. The model’s parameters were refined using a genetic

algorithm, which reduced the median distance between the new and old

model to 6mm – a comparable result to the dataflow model.9

9	 The genetic algorithm initially proved ineffective on the parametric models produced
by logic programming since the logic programming interpreter initialised all values to
zero, which caused the optimisation to begin thousands of millimetres from its target.
In pulling the geometry towards the target, the genetic algorithm had a tendency to get
stuck on local optima. To overcome this problem, the values of the model were initialised
using a hill climbing algorithm. This got the geometry into approximately the right place
before the final refinement with the genetic algorithm.

Hopper Fronton pitch

Major Fronton

Minor Fronton Fronton Angle

113

5.7	 Analysis of

Programming Paradigms

Method

Straightening the Sagrada Família’s frontons with a logic programming

paradigm and a dataflow paradigm presents the opportunity to observe

how the programming paradigms affect the respective parametric models.

The following observations draw upon the research instruments discussed

in chapter 4. Of particular interest is how the programming paradigm

impacts the model’s construction time as well as the relative modification

time and extendability. In addition, the latency between changes and the

verification of model correctness are important differentiators between

the two paradigms.

Construction Time

Constructing the first version of the dataflow parametric model in Digital

Project and Excel took approximately twenty-three hours. This time does

not include the time taken to convert the original geometry into Digital

Project or the subsequent time spent modifying the first version of the

parametric model. Much of the twenty-three hours was consumed selecting

the appropriate parametric relationships, working out how to apply the

relationships in a hierarchy of parent-child connections, and verifying the

relationships generated the expected geometry. Working out the correct

parent-child connections was deceptively difficult since connections often

had flow-on implications for the surrounding geometry. These challenges

were largely avoided with logic programming by generating the majority

of the axioms automatically from the existing geometry and by using the

logic programming interpreter to infer the hierarchy of relationships these

connections imply. Accordingly, constructing the first version of the logic

programming parametric model took approximately five hours.

In this case using a logic programming paradigm was four to five times

faster than using a dataflow paradigm. The time difference is largely

attributable to the automatic extraction of axioms and subsequent

114

inference of the model’s hierarchy with the logic programming interpreter.

This was only possible because there was a pre-existing geometric model

of the frontons, which is an unusual circumstance for most architecture

projects. The difference in construction time cannot therefore be expected

on other architecture projects, particularly ones without a pre-existing

geometric model. Nevertheless, the variance in construction time

demonstrates that programming paradigms can significantly affect

projects, although these affects are dependent upon the circumstances

of the project. An appropriate circumstance for logic programming seems

to be when a pre-existing explicit geometric model needs to be converted

into a parametric model.

Modification Time and Extendability

Modification time is a quantitative measure of how long a change takes

to make while extendability is a qualitative assessment of the ease with

which a program adapts to change (Meyer 1997, 6-7). In straightening

the frontons there were two primary changes asked for, both of which

reinforce the precision required in the project:

1.	 Minor Fronton Angle: On the original distorted model the minor

fronton axis angle was 43.875 degrees (fig. 41). I initially ‘corrected’

this to 45.000 degrees, which caused the model to move significantly.

The design team asked the angle be changed back to 43.875 degrees

before subsequently deciding that 43.904 degrees was most in keeping

with the geometry of the Sagrada Família’s central tower. When I built

the dataflow model I was uncertain of the fronton angle so I included

a parameter to control it. This parameter permitted these changes to

be made almost instantaneously. On the logic programming model

the changes could be accommodated by adding a new axiom to define

the vector of the plane linked to the centre of the minor fronton.

This process took slightly longer than in the dataflow language, but

still less than fifteen minutes.

2.	 Minor Fronton Pitch: In one of the final iterations it was discovered

that the pitch of the major and minor frontons was slightly different. I

had come across the anomaly previously but assumed it was a rounding

error since the deviation was less than 0.02 degrees. Over a ten metre

115

span this slight abnormality resulted in a 2mm error, which was

outside the tolerance of the seven-axis robot milling the frontons. The

solution was to redefine the pitch of the minor fronton. In the dataflow

model this change had few flow-on consequences and therefore

took less than thirty minutes to implement. The logic programming

language unfortunately lacked the vocabulary to express the pitch

change. I spent two hours adding a new construction axiom to the

logic programming vocabulary that permitted a vector to be mirrored

through a plane. Once this axiom was added, it took approximately

fifteen minutes to change the pitch of the minor fronton by mirroring

the pitch of the major fronton.

On this project both programming paradigms were extendable enough to

accommodate both of the primary changes. The changes were somewhat

unusual in that they did not affect the topology of the project (an act

many authors I discussed in chapter 2.3 found disruptive). The changes

instead focused on the precision of the model and the way the geometry

was related. In making these changes the dataflow language offered slightly

faster modification times: in the first case because I anticipated the change

by including a parameter for it, and in the second case because logic

programming was slowed by limitations in its vocabulary. This success does

not confirm the agility of dataflow programming as much as it confirms the

importance of the designer’s intuition in setting up a model’s hierarchy,

and the importance of what Meyer (1997, 12-13) calls the modelling

environment’s functionality (having the right vocabulary to express an

idea or change).

In retrospect the changes to the frontons seem relatively minor for the

effort expended on them. However, the magnitude of these changes comes

from the model extendability rather than the brief. Had I been using a

non-parametric model, or had I created an inflexible parametric model,

both of these changes would have involved deleting over half of the model’s

geometry and starting again. The minor changes would have been serious

problems. Thus, while the attention to detail on the Sagrada Família

may seem pedantic, the level of design consideration is only afforded by

maintaining flexible representations.

116

Latency

Latency measures the delay in seeing the geometry change after changing

a model’s parameters. With the dataflow model, modifications to the Excel

values would propagate out into the geometry produced by Digital Project

within a few seconds, which was not quite real-time but near enough for

this project. Conversely, the logic programming model had a pronounced

latency between editing the axioms and seeing the resulting geometry.

Minutes would elapse while the interpreter worked to derive the parametric

model after axiom changes.10 Since the derived parametric model did not

always have parameters in intuitive places, often the only way to change

numerical values (like the angle of the minor fronton) was to change the

axioms and then wait as the interpreter derived a new parametric model.

This latency made changing the logic programming model a more involved

and less intuitive process than with the dataflow model.

Correctness

Correctness describes whether a program does what is expected (Meyer

1997, 4-5). For both programming paradigms it was difficult to verify

the models were doing what was expected. In the dataflow language the

quantity of relationships obfuscated the flow of data, which made it hard

to work out what the model should have been doing. On three occasions

this led to the wrong geometric operation being applied. These errors were

not apparent by looking at the dataflow model or by visually inspecting the

geometry, and they were only caught by the project architects manually

measuring the model. Logic programming was equally difficult to verify

because it was not always apparent how the geometry derived from the

axioms. Often I would end up adding axioms one-by-one to understand

their impact on the final geometry. In the end, both programming

paradigms produced parametric models that did what was expected but,

in a project where the geometric changes were subtle and the relationships

numerous, often the only way to verify correctness was to examine what

the model did rather than understand how the model did it.

10	 The latency increases with model size although it may be influenced by other factors.
These include the interpreter’s efficiency and the way the axioms define the problem. The
results discussed should not be interpreted as evidence that logic programming suffers
from general latency issues, rather the results should be read with the caveat that they
are particular to the project’s specific logic programming implementation and to the
specific circumstances of this project.

117

5.8	 Conclusion

Van Roy and Haridi (2004, xx) write that when it comes to programming

paradigms “more is not better (or worse), just different.” Yet for architects

applying parametric models to projects like the Sagrada Família, they have

always had less than more when it comes to programming paradigms.

Architects building parametric models are presently confined to either

declarative dataflow paradigms in visual programming languages, or

procedural imperative paradigms in textual programming languages. The

research I have presented demonstrates that programming paradigms

influence – at the very least – the parametric model’s construction

time, modification time, latency, and extendability. Since programming

paradigms cannot normally be switched without rebuilding a model,

selecting an appropriate programming paradigm for the context of a project

is a critical initial decision. This is a decision that has an evident affect

on many aspects of a parametric model’s flexibility yet, unfortunately, it

is a decision largely unavailable to architects; they often cannot choose

more, less, or different – just: dataflow or procedural. Van Roy and Haridi’s

discussions of programming languages are interesting, not just because

Van Roy sees the Sagrada Família as a metaphorical signifier of them,

but because these discussions of programming paradigms signify how

parametric models, like those used on the Sagrada Família, can be tuned

to privilege different types of design changes.

Perhaps the most intriguing part of this case study is the disjunction

between the theoretical advantages of logic programming and the realised

advantages of logic programming. I began this chapter by talking about

the challenges of modifying the hierarchy of relationships in a dataflow

language and I postulated that the time associated with these modifications

could theoretically be reduced if the computer – rather than the designer

– organised the parametric model’s hierarchy. In a series of diagrams I

illustrated how a logic programming language would allow a designer to

specify directionless connections that are automatically organised by a logic

programming interpreter, thereby reducing the theoretical modification

time. Yet in reality the opposite happened: when used to generate the

parametric model of the Sagrada Família’s frontons, logic programming

actually lengthened the modification time. This is in large part because

the interpreter often took a long time to generate a new instance of the

model – a detail easily overlooked when discussing logic programming

Figure 42: The frontons
under construction at
The Sagrada Família in
September 2012.

119

theoretically, but one that can possess significant importance when a

designer has to wait five minutes for the logic programming interpreter

to work through the six hundred axioms in order to realise a single

modification to the frontons. While these results are highly dependent

upon circumstance – and although the Sagrada Família’s size, detail, and

precision makes it a rare circumstance – these results do underscore the

value of practice-based understandings of parametric modelling. This

disjunction between theory and practice when talking about programming

paradigms is perhaps the reason why logic programming failed to live up

to the theoretical expectations that had been expressed by authors who

had never actually used logic programming in practice – examples include,

Mitchell (1990) in The Logic of Architecture and Swinson (1982) in Logic

Programming: A computing tool for the architect of the future.

While logic programming did not live up to Mitchell or Swinson’s

hopes, and while logic programming induced a far greater latency than I

expected in theory, this is not to say logic programming is without merit.

Logic programming in architecture, as in software engineering, appears to

excel at reasoning about relationships. In this capacity, it seems particularly

suited to extracting relationships from pre-existing geometry in order to

derive a parametric model; the reverse of the typical parametric modelling

process. In the fronton case study, with a pre-existing geometric model of

the frontons, this led to significantly reduced construction times when

compared to the dataflow model. However, both methods produced large

and intricate models that were hard to verify as being correct – an issue of

understandability addressed in the following chapter.

120

6	 Case B:
Structured
Programming

Project: Designing Dermoid.

Location: Royal Danish Academy of Fine Arts, Copenhagen, Denmark.

Project participants from SIAL: Mark Burry, Jane Burry, Daniel Davis,

Alexander Peña de Leon.

Project participants from CITA: Mette Thomsen, Martin Tamke, Phil

Ayres, Anders Deleuran, Aron Fidjeland, Stig Nielsen, Morten Winter,

Tore Banke, Jacob Riiber; Workshop 3, Material Behaviour, Department

2, EK2, fourth year (November 2010); Workshop 4, Paths to Production,

Department 2, third year, (January 2011).

Related publications:

Davis, Daniel, Jane Burry, and Mark Burry. 2011. “Understanding

Visual Scripts: Improving collaboration through modular

programming.” International Journal of Architectural

Computing 9 (4): 361-376.

Davis, Daniel, Jane Burry, and Mark Burry. 2011. “Untangling

Parametric Schemata: Enhancing Collaboration through

Modular Programming.” In Designing Together: Proceedings

of the 14th International Conference on Computer Aided

Architectural Design Futures, edited by Pierre Leclercq, Ann

Heylighen, and Geneviève Martin, 55-68. Liège: Les Éditions

de l’Université de Liège.

121

6.1	 Introduction

In June 2010 I found myself biking to the edge of Copenhagen, out past

the Royal Danish Academy of Fine Art, and into a secluded concrete studio.

The studio was filled with full-scale wooden prototypes, with laptops

connected to various international power adaptors, and with researchers

from CITA1 and SIAL2. The researchers were all debating a deceptively simple

problem: how can we fashion a doubly curved pavilion from a wooden

reciprocal frame. It is a question that would occupy a dozen researchers,

including myself, for over a year; a question that would eventually led to

the construction of the first Dermoid pavilion in March 2011.

1	 Center for Information Technology and Architecture at the Royal Danish Academy of
Fine Arts, Copenhagen

2	 Spatial Information Architecture Laboratory at RMIT University, Melbourne

Figure 43: Digital
and physical models
intermixed at the
June 2010 Dermoid
Workshop. From
left to right: Martin
Tamke, jacob Riiber,
Morten Winter, Jane
Burry (hidden), Mark
Burry, Alexander Peña
de Leon, Phil Ayres,
Mette Thomsen.

122

Figure 44: Detail of
Dermoid installed at the
1:1 Research By Design
exhibition, March 2011,
Royal Danish Academy
of Fine Art, Copenhagen.

Figure 45: Dermoid
installed at the 1:1
Research By Design
exhibition, March 2011,
Royal Danish Academy
of Fine Art, Copenhagen.

125

There are numerous reasons why Dermoid was so difficult. One source of

difficulty was the unknowns in the brief: we did not know the shape of

the pavilion’s doubly curved surface, or even where the pavilion would be

built; and at the time no one could calculate the structural performance

of a reciprocal frame, especially one constructed from a heterogeneous

material like wood. There were also many known difficulties in the brief:

uniformly patterning a doubly curved surface is notoriously hard, and

the circular relationships of a reciprocal frame do not lend themselves to

parametric modelling. Further adding to the difficulty, the project involved

a diverse team situated at opposite ends of the earth. In short, it was a

project destined to challenge even the most skilled designers, the ideal

project to observe the inflexibility of parametric models.

While Dermoid embodies many noteworthy innovations, in this case study

I want to discuss specifically the development of Dermoid’s parametric

models. The models have many authors since the researchers working on

Dermoid were all experienced in parametric modelling, many of them

world experts. The range of contributors meant that there was rarely a

single “keeper of the geometry” – a name Yanni Loukissas (2009) gives to

the person on a project who inevitably becomes solely responsible for the

upkeep of the model. I assumed this role briefly as I prepared Dermoid’s

parametric models for a workshop held in November 2010 at the Royal

Danish Academy of Fine Arts. During this period I experimented with

changing the structure of the models based on organisational techniques

used by software engineers (identified in chapter 3.2). In this chapter I

consider the impact of these changes using a combination of thinking-

aloud interviews and observations of subsequent model development. I will

begin by discussing the historic motivation that led software engineers to

structure their code, and benefits they observed from doing so.

126

6.2	 Structured Programming

In March 1968, Edsger Dijkstra (1968) wrote a letter to the Association

for Computing Machinery entitled Go To Statement Considered Harmful. At

the time, the GOTO statement was the primary mechanism of controlling

a computer program’s sequence of execution (the GOTO statement allows

a program to skip ahead or jump backwards in a chain of programming

commands). Dijkstra (1968, 148) argued that the intertwined jumps

programmers were producing with GOTO statements were “too much an

invitation to make a mess of one’s program.” Building on the work of Böhm

and Jacopini (1966), Dijkstra proposed reducing the mess with simple

structural commands such as if-then-else, and while-repeat-until. Although

these structures now underlie all modern programming languages, they

were not an obvious development in 1968. Many worried that structure

would interrupt the “art” of programming (Summit 1996, 284), and

that code would be even more difficult to understand when obscured by

structure. Dijkstra (1968, 148) agreed and cautioned, “the resulting flow

diagram cannot be expected to be more transparent than the original one.”

Nevertheless, when scientists assembled at NATO a few months later in

1968 to discuss the impending software crisis – with Dijkstra in attendance

– many of their conversations made reference to code structure (Naur and

Randell 1968).3

While there was no single cure to the software crisis, structure is now

recognised as an important remedy for taming what Bertrand Meyer

(1997, 678) calls the “unmistakable ‘spaghetti bowl’ look” of tangled

GOTO statements that undoubtedly contributed to parts of the crisis.

There are many types of structure but Böhm and Jacopini’s (1966) original

proof (referred to by Dijkstra) uses only three, which they represent by

the symbols ∏, Ω, and ∆ (fig. 46). Böhm and Jacopini (1966) showed how

these three structures could be combined, without the GOTO statement,

to create Turing complete programs. The implication of their proof is

3	 At the meeting unstructured code was never singled out as one of the a causes of the
software crisis. In fact, none of the attendees in the meeting minutes (Naur and Randell
1968) make reference to unstructured programming or the GOTO statement. They do
however often talk about code structure and code modules. Dijkstra also presented a
paper entitled Complexity Controlled by Hierarchical Ordering of Function and Variability
where he describes grouping code into layers that are restricted so they can only
communicate with layers above them. While there are structural principles to this idea,
it is a different type of structure to the one Böhm and Jacopini (1966) discussed and that
Dijkstra (1968) referred to in Go To Statement Considered Harmful. In essence, structure
was an idea that was gaining traction around the time of the NATO conference, but one
that was still in the early stages of taking shape.

127

that any unstructured program employing the GOTO statement can be

rewritten without the GOTO statement by decomposing the program into

a structure of subprograms that are linked using ∏, Ω, and ∆. Doing so

eliminates the danger of stray GOTO statements jumping into unexpected

locations. However, it took a lot more than a letter from Dijkstra for this

proof to filter down into practice.4

Modules

The subprograms employed by Böhm and Jacopini have many synonyms

in contemporary programming: methods, functions, procedures, and

modules. Each term signifies the same general idea with a slightly

different overtone. I have chosen to use the word module because of the

connotations with standardisation, reuse, self-containment, and assembly

(themes I will explore further in this chapter). A module is defined by Wong

and Sharp (1992, 43) as “a sequence of program instructions bounded by

an entry and exit point” that perform “one problem-related task” (these

principles are applied to a module in Grasshopper in figure 47). If employed

4	 While Böhm and Jacopini (1966) had shown that it was theoretically possible to
write programs without the GOTO statement, this was not possible in practice until
programming languages could accommodate Böhm and Jacopini’s three structures:
sequence, iteration, and selection. Even after the development of these languages,
programmers who were comfortable using the GOTO statement still used it. And
nineteen years after Dijkstra’s (1968) original ACM letter – Go To Statement Considered
Harmful – people were still writing rebuttals in the letters to the ACM like Frank Rubin’s
(1987) “GOTO Considered Harmful” Considered Harmful.

∆

Ω

∏

Figure 46: The three
structures that Böhm
and Jacopini (1966)
proved could be
combined to create a
Turing machine.

Sequence: Executing a subprogram
in order.

Iteration: Executing a subprogram
until a condition is reached.

Selection: Executing a subprogram
based on a condition.

128

successfully, modules have five principle benefits according to Bertrand

Meyer (1997, 40-46):

1.	 Decomposition: A complicated problem can be decomposed into

a series of simpler sub-problems each contained within a module.

Decomposing problems like this may make them easier to approach

and may make it easier for teams to work together since each team

member can work on a separate sub-problem independently.

2.	 Composition: If modules are adequately autonomous they can be

recombined to form new programs (a composition). This enables the

knowledge within each module (of how to address a sub-problem) to

be shared and reused beyond its original context.

3.	 Understandability: If a module is fully self-contained, a programmer

should be able to understand it without needing to decipher the overall

program. Conversely, a programmer should be able to understand the

overall program without seeing the implementation details of each

individual module. Dijkstra (1968, 148) worried this would lead

to less transparency but most have since argued that abstraction

helps understandability. For instance, Thomas McCabe (1976, 317)

has posited that modularisation improves understandability since

it reduces the cyclomatic complexity, making it “one way in which

program complexity can be controlled.” Meyer (1997, 54) points out

that modularisation aids a programmer’s comprehension of the code

through the names given to inputs, outputs, and the module itself.

4.	 Continuity: A program has continuity when changes can be made

without triggering cascades of other changes. In a program without

continuity, changing one module will affect all the dependent modules,

A

B C

E
D

Figure 47: A typical module in
Grasshopper. The grey boxes
are operations (themselves
small modules) that have
been linked together to form
a larger module. More recent
versions of Grasshopper have
native support for modules
(which are called clusters in
Grasshopper) however at
the time of my research this
version of Grasshopper had not
been released.

A: The name of the module.

B: The inputs – the only place
data enters the module.

C: The outputs – the only place
data leaves the module.

D: The operations of the module
are encapsulated so that they
can only be invoked by passing
data through the module’s
inputs.

E: A description of what the
module does – a module does
one problem-related task.

129

setting off a chain-reaction as all the dependent modules are changed

to accommodate the original change and so on. Continuity has much to

do with how a program’s structure is decomposed. David Parnas (1972,

1058) suggests that projects should be broken around “difficult design

decisions or design decisions which are likely to change” so that each

anticipated change is contained within a module in such a way that it

does not impact the other modules.

5.	 Protection: Each module can be individually tested and debugged to

ensure it works correctly. But if something does go wrong within a

module, the module can contain the error and thwart its propagation

throughout the program (protecting the rest of the modules from

the error).

The benefits of modularisation are so pervasive that some modern

programming languages, like C# and Java, make it impossible to write code

not contained within some sort of module. Java even stopped supporting

the GOTO statement, and some of the more recently invented languages

– like Python and Ruby – have never supported the GOTO statement.5 In

its place are screeds of structural constructs, from switch-case, to try-catch,

to polymorphic objects. These structures, like Böhm and Jacopini’s original

three, offer programmers various ways to decompose and recompose

programs from smaller, self-contained chunks. Debates continue about how

best to wield structure in order to increase understandability and reduce

complexity, whilst improving continuity and protection. These debates fill

entire sections of libraries and occupy the Software Design [2.2] section

of the Software Engineering Body of Knowledge Version 1.0 (Hilburn et al.

1999, 20). Yet despite the pervasive benefits of modularisation, architects

creating parametric models in visual programming languages still tend to

create unstructured models, as I will show in the following section.

5	 Neither Python nor Ruby support the GOTO statement by default but it can be turned
on in Ruby 1.9 by compiling with the flag SUPPORT_JOKE and it can be added to Python
by importing a library Richie Hindle created as an April fools joke in 2004 (http://
entrian.com/goto/). The jesting about adding GOTO to Ruby and Python speaks volumes
of their relationship with the GOTO statement.

130

6.3	 Architects Structuring

Visual Programs

Unlike the programming languages in the 1960s, which were unstructured

simply because the syntax for structure had not been invented, all the

major visual programming languages used by architects have some basic

structural constructs. In particular, they all support modularisation. In the

lexicon of the various software, modules have come to be known as features

in Bentley’s GenerativeComponents, digital assets in Sidefx’s Houdini,

and clusters in McNeel’s Grasshopper. But even though these modular

constructs exist, architects tend not to use them. In chapter 4.3’s sample of

2002 Grasshopper models, 97.5% of the models did not employ modules.6

Moreover, 48% of models had no modules, no groups, no explanation of

what they did, and no naming of parameters: by even the most generous

of definitions these models were completely unstructured.7 In addition to

being unstructured, the models generally have a high cyclomatic complexity

(see chap. 4.3) and possess what Meyer (1997, 678) calls the “unmistakable

‘spaghetti bowl’ look” of interwoven relationships and long chain

dependencies (fig. 48). In many ways these tangled visual programs parallel

6	 1553 of the sampled models were created in a version of Grasshopper that supported
clusters (either below version 0.6.12 or above version 0.8.0) and of these models only
39 contained at least one cluster.

7	 In the sample of 2002 Grasshopper models, 36% of the models contained at least one
piece of text that explained what part of the model did; 30% of the models used one
or more groups; 19% of the models had at least one node that named a branch of data;
2.5% of the models had clusters; and 48% had none of the above. This does not mean
the other 52% are entirely structured; even though a model is structured by groups, and
explanations, and names, their presence does not guarantee that the model is structured
(for example, the unstructured models in figure 48 are part of the 52% since they both
use groups). The percentage of unstructured models therefore falls somewhere between
48% and 97.5% depending on the definition of structure, but I would assume most
definitions would conclude that at least 90% of the sampled models are unstructured.

Figure 48: Examples
of spaghetti forming
in two unstructured
Grasshopper models.
Neither model gives any
hint (through naming or
otherwise) as to what the
crisscrossed connections
do and it is impossible
deduce simply from
inspection.

131

the knots of GOTO statements that characterised the programs of the

1960s, with seemingly similar consequences in terms of understandability.

It remains unknown precisely why architects are creating models that

are seemingly so messy, complicated, and unstructured. Two possible

explanations are that the Grasshopper implementation of modules is

somehow flawed, or that architects lack the knowledge required to utilise

the modules properly.8

8	 A third explanation has been put forward by others I have spoken to: architects are
under too much pressure to bother structuring their models. As Woodbury (2010, 9)
puts it, architects quickly “find, skim, test and modify code for the task at hand” and
then move onto the next one leaving “abstraction, generality and reuse mostly for ‘real
programmers’.” I find this explanation unconvincing because it ignores the fact that
many software engineers are also working under a lot of pressure. If software engineers
and architects both experience pressure, then pressure alone does not explain why one
group so studiously structures their programs while the other group almost never does.

Figure 49: A cluster in
Grasshopper (a model
used in chapter 7 for the
FabPod). Top: The full
parametric model with
the cluster in its most
abstract form. Bottom:
Opening the cluster to
reveal the operations it
encapsulates, however,
opening the cluster also
hides the rest of the
model, which impedes
the model’s visibility and
juxtaposability.

132

Implementation of Clusters

The low use of modules may be in part an artefact of Grasshopper’s cluster

implementation. Clusters were a feature present in early versions of

Grasshopper that was later removed in version 0.6.12 and subsequently

reintroduced in version 0.8.0. The inconsistent presence and function of

clusters undoubtedly makes some users untrusting of them.

Perhaps more significantly, however, the way clusters are currently

implemented in Grasshopper may actually impede the understandability

of the model.9 As Dijkstra (1968, 148) warned, structure can make the

resulting program less “transparent than the original one.” While the

abstraction brought about by less transparency may be beneficial in a

textual language, in a visual language structural abstractions can hinder

access to code according to Green and Petre (1996, 164). Their widely

cited research on the usability of visual programming languages indicates

that the understandability of a program is dependent upon visibility (how

readily parts of the code can be seen) and juxtaposability (the ability to

see two portions of code side-by-side) (Green and Petre 1996, 162-164).

Clusters in Grasshopper constrain visibility by limiting the view to one

particular level of abstraction at a time (fig. 49). Juxtaposability is currently

impossible in Grasshopper since two levels of abstraction cannot be seen

at the same time, or side-by-side. Furthermore, cluster reusability is

impeded since cluster changes do not propagate through related instances

of reused clusters. Owing to these limitations, the clusters in Grasshopper

are more suited to packaging finalised code rather than supporting the

decomposition and composition of an evolving program (the way structure

is typically used in textual programs). This may be one reason for low

cluster use in Grasshopper.

9	 At the time of writing (late 2012) Grasshopper is still under development. This
description of clusters in Grasshopper helps explain why clusters and structure were
not in the models I sampled, but it may not apply to models created in future versions
of Grasshopper since the cluster implementation is likely to change.

133

Structure and Education

Another possible factor leading to low cluster use has to do with the

education of architects. Designers are generally not taught about parametric

modelling as much as they are taught to use parametric modelling

software.10 Woodbury (2010, 8) observes that most manuals and tutorials

teach students by “providing lists of commands or detailed, keystroke-

by-keystroke instructions to achieve a particular task.” For example, a

student learning to use Grasshopper may start with the Grasshopper Primer

(A. Payne and Issa, 2009). On page twenty-seven they learn how selecting

seven items from the menu and linking them together produces a spiral

through points, which is a lesson that is not substantively different to

learning how selecting two items from the menu in the non-parametric

software, Rhino, will also produce a spiral through points. This pedagogy

continues throughout the Grasshopper Primer and in other Grasshopper

introductions like Zubin Khabazi ’s (2010) Generative Algorithms using

Grasshopper as well as in the teaching material for other parametric

modelling software like Bentley Systems’ (2008) GenerativeComponents V8i

Essentials and Side Effects Software’s (2012) Houdini User Guide. Students

using these various guides are primarily taught the particular sequence

of interface actions to make a tool that produces a particular geometric

outcome, almost always without being taught the accompanying abstract

concepts like program structure.

This parametric modelling pedagogy contrasts sharply with how

programmers are taught. In chapter 3.2 I showed how the basic skill of

programming (knowing the particular sequence of interface actions to

produce a particular outcome) forms only a small part of the Software

Engineering Body of Knowledge Version 1.0 (Hilburn et al. 1999). Programming

is therefore only a small part of what entry level programmers are expected

to know. Even resources designed to teach the basic skill of programming

cannot help but discuss more abstract structural concepts – for instance,

the fifth, sixth, and seventh chapters of Beginning Python (J. Payne 2010)

respectively cover the following: creating subprograms and functions;

10	 This teaching method has been advanced since at least 1989 when Alexander Asanowicz
argued at eCAADe “we should teach how to use personal computer programs and not
programming.”

134

creating classes and objects; and structurally organising programs.11

Structure is such an intrinsic part of programming that it is mandatory in

some languages, like Java and C#, a concept reinforced in the practice of

programming and fundamental to the education of programmers.

For architects, the most comprehensive analysis of structuring parametric

models comes from Woodbury, Aish, and Kilian’s (2007) paper, Some

Patterns for Parametric Modeling, which was later republished as a sizeable

part of Woodbury’s (2011) Elements of Parametric Design. The paper riffs on

the seminal software engineering book Design Patterns by Gamma, Helm,

Johnson, and Vlissides12 (1995), although each has a slightly different

emphasis: Design Patterns focuses on methods of structuring code to

address problems with the code itself (such as reusability, understandability,

and extendability), whereas Some Patterns for Parametric modeling presents

patterns that solve problems specific to architecture (such as ordering

points, projecting geometry, and selecting objects). This makes Some

Patterns for Parametric Modeling more like a recipe book of useful modules

than a Design Patterns-esque guide for structuring programs.

One pattern from Some Patterns for Parametric Modeling does address

problems with the understandability of code itself. The Clear Names

pattern advocates always naming objects with “clear, meaningful, short

and memorable names” (Woodbury 2010, 190). This is a relatively

easy pattern to follow in Grasshopper since the names of parameters

can be quickly changed by clicking on them. Yet neither of the training

manuals provided on the official Grasshopper website teach architects

the clear names pattern. The only reference in Generative Algorithms Using

Grasshopper comes from a caption that mentions “I renamed components

to point A/B/C by the first option of their context menu to recognize them

easier [sic] in canvas” (Khabazi 2010, 11). Similarly, the only reference

in the Grasshopper Primer is half a sentence mentioning that designers

can “change the name to something more descriptive” (A. Payne and Issa

2009, 10), without explaining how or why they should. Not surprisingly,

81% of the Grasshopper models I sampled contained no uniquely

named parameters. This absence of basic modifications that improve the

11	 While I have chosen Beginning Python to illustrate this point, the same is true of almost
any book on programming.

12	 Design Patterns is in turn based upon the work of Christopher Alexander.

135

understandability of models may be a symptom of how architects are

taught to model. While programmers learn about structure in basic books

like Beginning Python and in dedicated books like Design Patterns, even

simple concepts like naming parameters cannot be found in the educational

material given to architects. This may be one reason that more advanced

structural techniques (like modules) are so infrequently used by architects.

To Understand Visual Programs Better

The benefits of structured programming are undebatable for contemporary

software engineers; it is something all programmers do, something some

languages mandate, something covered in even basic introductions to

programming. Despite the strong evidence in software engineering that

structure is beneficial, we know very little about how the structure of

parametric models affects the practice of architecture. We do know that

architects tend not to structure their models, with two possible factors being

both the education of architects and the way modules are implemented in

parametric software. In this case study I consider what happens if these

two impediments are removed and an architect structures their model.

In particular I examine whether overcoming such impediments would be a

worthwhile pursuit for architects. I have spread these considerations over

a series of three experiments related to structuring the parametric models

of the Dermoid pavilion:

1.	 Evaluating the understandability of structured programs through

thinking-aloud interviews [6.4].

2.	 Analysing Dermoid’s modular model structure and how this affected

the project development [6.5].

3.	 Consideration of how parts of Dermoid can be recomposed and shared

with the internet [6.6].

136

6.4	 Understandability of Visual

Programs in Architecture

To discern whether structuring a parametric model impacts an architect’s

comprehension of the model, I conducted an experiment whereby

architecture students were shown a series of structured and unstructured

visual programs. Using a thinking-aloud interview technique I established

how legible the students found models with and without structure, thereby

articulating what architects may or may not be missing when they create

visual programs devoid of structure.

Method

Thinking-aloud interviews are a type of protocol analysis commonly used

in computer usability studies as a means of understanding a user’s thought

process as they carry out a task (Nielsen 1993, 195-200; Lewis and Rieman

1993, 83-86). Clayton Lewis pioneered the technique while working at

IBM, a technique he plainly describes as “you ask your users to perform

a test task, but you also ask them to talk to you while they work on it”

(Lewis and Rieman 1993, 83). Users are typically asked to discuss the

“things they find confusing, and decisions they are making” (Lewis and

Rieman 1993, 84). As participants answer these questions they hopefully

give the researcher an insight into their experience of performing the

tasks; insights that would otherwise be concealed if the researchers only

examined the participants actions, or only asked the participants point-

blank, how easy was this task?

The participants were randomly selected from a class of twenty-five

architecture students from the Royal Danish Academy of Fine Art who

were attending a weeklong parametric modelling workshop. Four students

were selected based on usability expert Jacob Neilson’s (1994, 249-56)

recommendation to use between three and five participants in thinking-

aloud interviews. The selected students each had between one and seven

years’ experience with computer-aided design, and all had one year’s

experience using Grasshopper – making them competent users but by no

means experts. Each participant was shown three Grasshopper models in

a prescribed order (fig. 50). For every model presented, the participant was

Model-A1
Nodes:	 41
Structured:	 Yes
Function:	 Wraps two-dimensional pattern onto a surface
Equivalent to:	 Model-C1

Model-B
Nodes:	 120
Structured:	 Yes
Function:	 Draws triangles on a hemisphere from an inscribed polyhedron
Equivalent to:	 n/a

Model-C1
Nodes:	 26
Structured:	 No
Function:	 Wraps two-dimensional pattern onto a surface
Equivalent to:	 Model-A1

Figure 50: The Grasshopper models shown to the participants. To reduce the bias from
one model being uncharacteristically understandable the participants were either shown
the three models on this page or the three models on the facing page (selected at random).
The first model the participants saw, model-A, was a structured versions of the last
model the participants saw, model-C. These models were of an average size (see chap. 4.3)
and did a task the participants were generally familiar with (applying two-dimensional
patterns to three-dimensional surfaces). To mask the fact that model-A and model-C were
equivalent, the participants were shown model-B in between, which was much larger
and did a task the participants were unfamiliar with (to ensure the participants spent a
long time studying the model and forgetting about the first model). As the experiment
was conducted at a time when Grasshopper did not support clusters, the structure was
generated through visually separating groups of code around defined entry and exit points,
and through clearly naming parameters and groups. Fortuitously this avoids some of the
aforementioned issues of visibility and juxtaposability present in Grasshopper’s current
cluster implementation.

Model-A2
Nodes:	 39
Structured:	 Yes
Function:	 Projects two-dimensional pattern onto a surface
Equivalent to:	 Model-C2

Model-B
Nodes:	 120
Structured:	 Yes
Function:	 Draws triangles on a hemisphere from an inscribed polyhedron
Equivalent to:	 n/a

Model-C2
Nodes:	 20
Structured:	 No
Function:	 Projects two-dimensional pattern onto a surface
Equivalent to:	 Model-A2

139

set the task of describing how the model’s inputs controlled the model’s

geometry (which was hidden from view) while talking-aloud about their

reasoning process. This essentially placed the participants in a role similar

to a designer trying to understand a parametric model a colleague had

shared with them. The participants were free to explore the model by

dragging, zooming, and clicking on screen.

Unbeknownst to the participants, the only difference between the first

model they saw (model-A) and the last model they saw (model-C) was the

structure of the two models. This allowed me to observe a designer reading

a structured model and then reading again the unstructured version of

the same model. I was then able to compare how structure affected the

understandably of the two models. To mask the similarities of the first and

last model, the participants were shown a much larger model (model-B) in

between seeing the structured model-A and its unstructured equivalent,

model-C. None of the participants realised they had been shown two

versions of the same model.

Thinking-Aloud Results

When shown the structured model (model-A) the participants could all

describe the model’s overall function. They had no problems identifying

the inputs or outputs, and half could describe what occurred in each

of the model’s major stages. When asked about individual nodes, the

participants generally understood what each node did but on occasion

they would struggle to explain the precise outcome of a particular node

within its context.

In contrast, when shown the same model in unstructured from (model‑C)

all the participants resorted to guessing the model’s function (none guessed

correctly). A typical comment from Participant-2 was: “It relaxes the lines?

That’s a guess though, because I am not sure what any of these elements

[nodes], I am not sure what any of them do.” In reality all the participants

knew what each node did; when asked about individual nodes they would

be able to say things like “it [the node] makes a line that joins two points.”

What Participant-2 was struggling with – like all the participants – was

assembling this understanding of individual nodes into an understanding

of the aggregate behaviour of all the nodes. With no structure to guide

140

them, the participants often missed important clues like identifying the

model’s inputs. No participant even realised they were being shown an

unstructured version of the model they had seen earlier – all were surprised

when told afterwards.

That participants should find structured models more understandable

than unstructured models is hardly surprising given the aforementioned

practices of software engineers. Yet it is surprising to see how relatively

incomprehensible unstructured models – even small ones – are to

designers unfamiliar with them. Even the much larger model-B was better

understood by the participants than the small and unstructured model‑C.

Despite model-B’s size and fairly obscure function, the participants could

all methodically move through the nodes in each module describing

them in far better detail than they could with model-C (although their

understanding was not as comprehensive as with model-A). While size

seems to invite complexity (see chap. 4.3), it seems that structure largely

determines a model’s legibility.

The structured models had a number of key elements that seemed to guide

the participant’s comprehension:

•	 Names: Participants regularly referred to node names and module

names as they explained the model. This reinforces the Clear Names

design pattern advocated by Woodbury (2010, 190). While naming

nodes is relatively easy in Grasshopper, in the sample of 2002

Grasshopper models, only 19% of the models had one or more nodes

that named a branch of data.

•	 Positioning: Participants often overlooked critical input nodes and

output nodes in model-C since the unstructured model had all the

nodes intermixed. Yet in the structured models (where all the inputs

were to the left and all the outputs to the right) the participants could

readily identify the inputs and outputs.

141

•	 Explanations: Some of the modules inside model-A and model-B

contained short explanations of what they did. Participants seldom

took the time to read these, which indicates a self-documenting

model (one with clear names and a clear structure) is preferable to

one explained through external documentation.

•	 Grouping: Two participants cited the grouping of nodes, and

particularly how they were coloured, as a major aid. As with naming

nodes, grouping nodes is relatively easy in Grasshopper, but it is not

done by the majority of users (70% of the 2002 sampled models had

no groups in them).

Factors in Understandability

There are different theories about how programmers come to understand

code (Détienne 2001, 75) but all agree it is fundamentally a mapping

exercise between the textual representation and the programmer’s internal

cognitive representation. While the precise mechanisms of this mapping

remain hidden, Green and Petre (1996, 7) observe that “programmers

neither write down a program in text order from start to finish, nor

work top-down from the highest mental construct to the smallest.

They sometimes jump from a high level to a low level or vice versa, and they

frequently revise what they have written so far.” This jumping between

levels corroborates with Meyer’s (1997, 40-43) suggestion that structure

helps programmers both to decompose high level ideas into smaller

concepts, and to compose smaller parts into larger conglomerates. Yet my

research has shown that the vast majority of architects neither compose

nor decompose, they instead arrange components at one fixed level of

abstraction. Architects presumably have in mind an overall notion of how

the model works, but it seems without structure this overall perspective

is lost along with the model’s legibility to designers who did not create

the model. Designers are left to deduce a model’s overall behaviour solely

through understanding the interaction of the model’s parts, which is an

inference that none of the participants I observed came close to making.

The key finding of these thinking-aloud interviews is that designers find

mapping between unstructured representations and their own internal

cognitive representations difficult, if not impossible. Structure does not

142

just make these mappings easier, it largely determines whether they can

be done at all. This is a concerning finding in light of how infrequently

architects structure their models. Most designers could introduce structure

with a few key alterations, the most effective of which seem to be: clearly

naming parameters, grouping nodes together, and providing clearly

defined inputs and outputs. These alterations seem to help communicate

the model’s intention, making it vastly more understandable for designers

unfamiliar with the model. In the following section I will discuss the

impact of making these alterations to parametric models used in an

architecture project.

6.5	 Structured Programming

in Practice

Dermoid

By the third Dermoid workshop (in November 2010; fig. 51), the project

team had a decided that Dermoid would consist of reciprocal hexagons

formed from cambered wooden beams weaving under and over a guiding

surface. The rationale for this structure is discussed in greater detail

by Mark Burry (2011) in Scripting Cultures but for the purpose of the

present discussion, suffice to say, the chosen design direction presented

numerous modelling challenges. By the November workshop there were

still many unknowns, including, the shape of the surface, the details of

the beam joints, and the overall structural performance. These would

remain unknown until days before the construction commenced in March

2011 (having been calculated progressively through a series of physical

modelling experiments). The unknowns suited the flexibility of parametric

modelling, yet the reciprocal frame did not lend itself to parametric

modelling since distributing a pattern on a doubly curved surface is a

difficult problem made harder in this instance by the circular relationships

of the reciprocal frame (which lend themselves to iterative solving rather

than the linear progression of a parametric model). Thus, while months

of work had occurred prior to the November workshop, most parts of the

parametric model were still up for negotiation and required a degree of

flexibility. I took the lead in developing the models for this stage of the

2009

March
Dermoid installed at the
1:1 Exhibition, Copenhagen

March
Workshop 1: The Reading Room
Student experiments with
creating spaces from bent wood

November
Workshop 3: Material Behaviour
Testing of models and refining the
structural system and details

January
Workshop 4: Paths to Production
Finalising construction details

Mark Burry awarded Velux Visiting
Professorship

2010

2011

October
Dermoid installed as part of
Copenhagen Design Week

June
Workshop 2: Research Workshop
Mathematical model of wood
bending along with investigations
of surface patterning and
structural analysis

Overall form & site development

Revising parametric models
with wishbone structure and
final materials / details

Development of modular system
for modelling Dermoid.

M
y

pr
im

ar
y

pe
rio

d
of

 in
vo

lve
m

en
t

Figure 51: Key milestones in the development of Dermoid.
Unlike a traditional design process, Dermoid’s design
commences with investigations into the material properties
of wood, and proceeds through detailing and design
development, before concluding with a sketch of the form.
This process is enabled to a large degree by the flexibility of
the parametric models.

144

project. In order to achieve the needed flexibility, I experimented with

structuring the models. Doing so allowed me to consider the practicalities

of structuring parametric models during a design project, and it also

allowed me to observe how the structured models evolved once I handed

them to other team members.

Structuring the Project

In the months prior to the November workshop, a number of key modelling

tasks emerged as areas of research:

1.	 Distributing the pattern evenly over the doubly curved surface.

2.	 Calculating the intersection points of the reciprocal frame.

3.	 Shaping and detailing the beams.

In a conventional linear design process, these considerations would come

as part of Design Development or Detailed Design. It is of significance that

they should be the early stages of Dermoid’s design process (fig. 51).

The dissociation with the orthodox design progression carries through

to other stages of Dermoid’s design where, for example, the construction

documentation was produced prior to finalising the overall form. While

changing a project’s form after generating the construction documentation

would ordinarily be extremely disruptive and time consuming, the

flexibility of Dermoid’s parametric models accommodated these types of

late changes relatively effortlessly. In many ways this is the antithesis of

Paulson and MacLeamy’s front-loading (see chap. 2.2): rather than forcing

designers to make critical decisions early in a project as a means to avoid

expensive design changes, in Dermoid the cost of change is lowered to

the point where critical decisions can be delayed until the designers best

understand the consequences of these decisions – even if this means

delaying a decision until almost the end of a project. The flexibility of

Dermoid’s parametric models essentially compressed the design cycle,

allowing conceptual decisions to manifest quickly in construction

documentation, allowing critical decisions to be delayed, and allowing the

design process to begin with considerations not conventionally explored

until later in the project.

2009

March
Dermoid installed at the
1:1 Exhibition, Copenhagen

March
Workshop 1: The Reading Room
Student experiments with
creating spaces from bent wood

November
Workshop 3: Material Behaviour
Testing of models and refining the
structural system and details

January
Workshop 4: Paths to Production
Finalising construction details

Mark Burry awarded Velux Visiting
Professorship

2010

2011

October
Dermoid installed as part of
Copenhagen Design Week

June
Workshop 2: Research Workshop
Mathematical model of wood
bending along with investigations
of surface patterning and
structural analysis

Overall form & site development

Revising parametric models
with wishbone structure and
final materials / details

Development of modular system
for modelling Dermoid.

M
y

pr
im

ar
y

pe
rio

d
of

 in
vo

lve
m

en
t

Figure 52: The outputs
from the chain of
parametric models that
generate Dermoid.Stage-A

Function:	 Generate the pattern
Inputs:	 n/a
Outputs: 	 2d network of lines

Stage-B
Function:	 Projects lines onto surface
Inputs:	 A surface; 2d lines
Outputs: 	 A surface; 3d line pattern

Stage-C
Function:	 Relaxes pattern to distribute
	 lines more evenly
Inputs:	 A surface; 3d line pattern
Outputs: 	 A surface; 3d line pattern

Stage-D
Function:	 Rotates each line to create the
	 reciprocal frame and weaves
	 the line under and over the
	 surface to camber the beam
Inputs:	 A surface; 3d line pattern
Outputs: 	 Network of curves

Stage-E1
Function:	 Creates flanges and webs
	 along curves to visualise
	 structure
Inputs:	 Network of curves
Outputs: 	 Array of surfaces

Stage-E2
Function:	 Prepares construction
	 documentation
Inputs:	 Network of curves
Outputs: 	 Laser cutting files

146

The project team developed a number of parametric models prior to the

November workshop as they explored the three initial areas of research

– pattern distribution, intersection points, and beam details. These models

naturally form a chain (fig. 52) that progressively generates Dermoid,

beginning with a two-dimensional pattern (Stage-A) and ending with the

construction documentation (Stage-E2). Each stage in this chain can be

thought of as a module since each has a prescribed set of inputs (from

the previous stage) and a distinct set of outputs (for the next stage). The

demarcations of these modules was not something imposed at the start

of the project, rather they naturally emerged and crystallised around

the volatile points of the project (pattern distribution, Stage-A, B & C;

intersection points, Stage-D; beam details, Stage-E2). In hindsight the

structure follows David Parnas’s (1972, 1058) advice to decompose projects

around “difficult design decisions or design decisions which are likely to

change.” By decomposing Dermoid around key points of research, each

research question had a respective parametric model that could change to

accommodate research developments. Provided any new parametric model

outputted all of the stage’s requisite data, changing the parametric model

would not disrupt the overall project. This allowed the team members to

work concurrently on different aspects of the project without interfering

with each other’s work. The structure was also software agnostic provided

each model returned the right outputs. This proved useful on wicked stages

(Rittel and Webber 1973) like pattern distribution (Stages B & C) where

the stage’s parametric model was rebuilt in at least five different software

packages during the course of the design. Being able to modify stages of

a project without disrupting the overall project is described by Meyer

(1997, 40-46) as continuity. Although breaking a parametric model into

six stages and manually feeding data between them may seem intuitively

less flexible than using a single parametric model, the continuity offered

by decomposing Dermoid into six distinct stages helped improve the

project flexibility by facilitating team-work and by helping make changes

less disruptive.

147

Structuring the Models

I began experimenting with structuring the models driving Dermoid as

I prepared them for the November workshop (fig. 53). The models had

initially been created in an unstructured way. To add structure I normally

had to do the following: prune the branches of code not contributing to

the model’s outcome; add new nodes to name paths of data clearly; and

group the nodes into modules by looking for places where the data was

naturally channelled into one or two streams. Software engineers call this

process of restructuring code, refactoring. By beginning with unstructured

code that I later refactored into a structured model I perhaps missed out

on using structure as a compositional and decompositional design aid

(Meyer 1997, 40-46), or as Green and Petre (1996, 7) put it, the “jumps

from a high level to a low level or vice versa”. While I normally follow the

practices described by Meyer, Green, and Petre when writing textual code, I

found it difficult to use structure as a guide to create these visual programs.

I have experimented with teaching architecture students to create visual

programs guided by the structure of Input-Process-Output diagrams

(Davis, Salim, and J. Burry 2011). While this method has had modest

success, particularly at getting students unfamiliar with programming

to think algorithmically, structured programming still feels forced in the

visual programming environment of Grasshopper. This preference for

structure through refactoring unstructured models may be tied to how

structure is implemented in Grasshopper, as I discussed earlier.

Figure 53: A section of
the parametric model
from Stage-D, which
demonstrates the
structure of the models
used in the November
Dermoid workshop.

148

After Structure

After the November workshop the Danish team members took charge

of finalising the parametric models as they prepared for Dermoid’s

construction in March 2011 (fig. 51). This allowed me to observe how the

structured models fared as major changes were made to them by designers

unfamiliar with the model’s structure. Three critical modifications were

made during this period:

1.	 The models in stages B and C (fig. 52) were replaced by a model in

Maya, which used Maya’s Nucleus engine to derive Dermoid’s overall

form and pattern.

2.	 The cambered beams were bifurcated into a wishbone structure.

3.	 The beam details and construction documentation were refined for the

specific construction materials and methods.

The first modification (using Maya to derive the form and pattern) was

simply a case of swapping models. Since the Maya model returned all the

expected outputs, the continuity of the project was preserved and none

of the surrounding models had to change. The other two modifications

(changing the topology of the beam and altering the construction

documentation) required extensive adaptations to the existing parametric

models. These changes were primarily carried out by a team member

who joined the project during the November workshop. While they were

initially unfamiliar with the models and my rationale for structuring the

models, they required very little guidance in modifying them (they seldom

contacted me for assistance). In order to make the changes, the designer

chose to combine all the stages of the project together into one massive

model (fig. 54). The resulting model contains 4086 nodes, which makes

Figure 54: The final
parametric model used
to design Dermoid.
While this model looks
messy, the model’s
creator has actually
composed the model out
of a hierarchy of modules
that make it relatively
easy to understand the
model given its size and
complexity. Many of
these modules are reused
from earlier iterations of
the project.

149

it twice as large as the largest model from chapter 4.3 and approximately

two hundred times larger than the average Grasshopper model. Without

prompting from me, the designer had carefully composed the model from

a hierarchy of modules. Almost all of the modules from the original model

had been reused, and these were complemented with a large number of new

modules the designer had created. The reuse of the modules demonstrates

that the designer could understand them well enough to apply them in a

new context, despite being initially unfamiliar with the project. While the

modules were cumbersome to create, this type of reuse demonstrates clear

benefits to structuring a project in terms of improving understandability,

collaboration, and reuse.

The complexities of Dermoid, both in terms of geometry and in terms of

collaboration, place it on the limit of what is currently possible in parametric

modelling – and perhaps beyond what is practical with an unstructured

visual program. Breaking the project into a hierarchy of stages seemed

to make it possible for designers to collaborate using disparate software,

while the modules within the models seemed to promote model reuse and

improve model understandability. At both scales, structure was difficult to

impose at the start of the project and instead tended to emerge from an

unstructured beginning to be later refactored with a few relatively minor

changes. Perhaps most significantly, the flexibility of this working method

facilitated the reorganisation of the design process, which enabled the

designers to delay critical decisions until they had the best understanding

of their consequences, rather than forcing the decisions early in order to

avoid the cost of later changes.

6.6	 Sharing Modules Online

By structuring Dermoid’s parametric models I had amassed a library of

modules able to be reused on other projects (as they were in later versions

of Dermoid). In order to share these modules with other designers, I

created the website parametricmodel.com, which lets anyone download

and use the modules under the Creative Commons Attribution-ShareAlike

licence (2007). The pages for each module intentionally resemble the

documentation programmers provide with libraries of modules; the page

for each module starts out with a short blurb, notes the modules inputs

and outputs, and then enters into a detailed description of how the module

Figure 55: The
homepage of
parametricmodel.com as
of 5 January 2013.

Figure 56: T he
hyperboloid module
download page.
Like documentation
that comes with
many programming
languages, the
download page
details what the
module does, the
parameters it
requires, and the
outputs it produces.

151

works. At the time of writing, July 2012, parametricmodel.com has been

running for twenty months, and in that time the 57 modules on the site

have been downloaded 47,740 times by 19,387 people from 127 countries.13

While I do not have access to the projects the modules have been reused

on, the 47,740 downloads indicate that the modules are reusable in a wide

range of contexts and useful to a large number of designers.

With the success of the module downloads, I was also interested in whether

parametricmodel.com could encourage designers to modularise their

models and share them via the website. When I launched parametricmodel.

com I designed the site so anyone could upload and share a module. In the

module upload page I attempted to balance prescriptively enforcing a

modular structure while minimising the obstacles to uploading. As such,

the website coaxes users into creating modules by asking them to describe

uploaded models with modular programming principles: defining the

inputs and the outputs, describing the problem the module solves, and

explaining how the module works. This has been relatively successful with

all the uploaded models conforming to the modular pattern. Yet for all the

modules downloaded, very few have been uploaded; for every thousand

people who download a module, on average only one returns to contribute

a new module. There are a whole host of reasons why architects may be

reluctant to upload modules, which range from concerns about liability,

to the effort and skill required in packaging a module, to a preference for

contributing to other websites – particularly personal websites – where

they may receive more control and more recognition. Despite the failure

of parametricmodel.com to elicit a large number of contributions, it has

been successful in demonstrating that thousands of designers want to

reuse pre-packaged modules. As was shown with the Dermoid project,

structure contributes to the reusability of components both by making

them more understandable and by making them easier to extract for

sharing. While structure may encourage sharing, there are other factors

involved, including, intellectual property rights and the intrinsic rewards

individuals receive for sharing. Parametricmodel.com shows how designers

may benefit if these impediments are overcome, and the creation and

sharing of modules becomes more widespread.

13	 The ten most active countries being: United States, United Kingdom, Germany, Australia,
Italy, Austria, Spain, France, Russia, and the Netherlands.

152

6.7	 Conclusion

Out at the edge of Copenhagen, out past the Royal Danish Academy of

Fine Art, and in the secluded concrete studio filled with researchers from

CITA and SIAL, we were facing a deceptively simple problem. The problem

was not directly the one posed earlier – how can we fashion a doubly

curved pavilion from a wooden reciprocal frame? With time the numerous

difficulties of this proposition were solvable. Rather the deceptively simple

problem was keeping the project flexible long enough for these discoveries

to be made. Structuring Dermoid’s parametric models undoubtedly

improved the project’s flexibility, enabling knowledge of Dermoid’s form

and material strength to inform the project just days before construction.

I say the problem is deceptive because a model’s structure is not necessarily

an obvious contributing factor to a project’s flexibility. Indeed, during

the 1960s’ software crisis many software engineers overlooked the

importance of program structure, often instinctively believing their woes

were a product of perceived inadequacies in areas like project management.

Today, however, structure is seen as so pivotally important to successful

programming that even basic introductions to programming normally

involve learning about structure, and some modern programming

languages mandate the use of structure. Yet architects creating parametric

models with visual programming languages are given only rudimentary

tools for structuring projects and receive almost no guidance in the

educational material on how to structure a project (one exception being

Woodbury, Aish, and Kilian [2007] giving the structural recipes for

common architecture problems). It is therefore not surprising that the

majority of architects overlook something as deceptively simple as clearly

naming parameters (81% do not name parameters) or using clusters

in their Grasshopper models (97.5% do not use Grasshopper’s inbuilt

modular structure, clusters; see chap. 6.3).

The widespread omission of structure in models created by architects

makes for concerning statistics in light of the benefits structure provides.

My thinking-aloud interviews seem to suggest that structure largely

determines whether an architect can understand a model, which is a

finding that confirms the existing research on the cognition of professional

programmers. Yet using structure to cognitively jump “from a high level to

a low level or vice versa” (Green and Petre 1996, 7) – such as professional

153

programmers often do – proved to be difficult in the visual programming

environments used by architects. From my experience structuring Dermoid’s

parametric models, structure came from refactoring unstructured models

rather than being the scaffold onto which programs are decomposed

and composed as Meyer (1997, 40-46) suggests. Nevertheless, breaking

Dermoid into a hierarchy of modules made it possible for designers to

collaborate using disparate software, and offered them the continuity to

make radical changes late in the project. The degree of flexibility within

this structure challenged the orthodox progression of the design process,

enabling details to be examined much earlier whilst allowing ordinarily

pivotal decisions to be explored right up until the point of construction.

In essence this was the antithesis of Paulson and MacLeamy’s front-loading

(see chap. 2.2): rather than making decisions early in order to avoid the

expense of changing them later, in Dermoid the cost of change was

lowered to the point where critical decisions could be delayed until they

were best understood. The structure also enabled parts of the models to

be extracted and reused by designers initially unfamiliar with the models.

While structure potentially encourages reuse, parametricmodel.com shows

sharing requires more than an easily decomposed structure. These benefits

of structure – in terms of reuse, understandability, continuity, and design

process flexibility – remain largely unrealised by architects. While this is

concerning, structure can be introduced with a few simple alterations.

The most effective strategies seem to be clearly naming parameters, and

grouping nodes together by function with defined inputs and outputs.

I have posited in this chapter that architects do not realise the benefits

of these simple structural changes due to both the limitations of design

environments and the way architects are educated, an argument I will pick

up again in the discussion.

154

7	 Case C:
Interactive
Programming

First iteration: Responsive Acoustic Surfaces.

Location: SmartGeometry 2011, Copenhagen, Denmark.

Project participants: Mark Burry, Jane Burry, John Klein, Alexander Peña

de Leon, Daniel Davis, Brady Peters, Phil Ayres, Tobias Olesen.

Second iteration: The FabPod.

Location: RMIT University, Melbourne, Australia.

Project participants: Nick Williams, John Cherrey, Jane Burry, Brady

Peters, Daniel Davis, Alexander Peña de Leon, Mark Burry, Nathan

Crowe, Dharman Gersch, Arif Mohktar, Costas Georges, Andim Taip,

Marina Savochina.

Code available at: yeti3d.com (GNU General Public Licence)

Related publications:

Davis, Daniel, Jane Burry, and Mark Burry. 2012. “Yeti: Designing

Geometric Tools with Interactive Programming.” In Meaning,

Matter, Making: Proceedings of the 7th International Workshop

on the Design and Semantics of Form and Movement, edited by

Lin-Lin Chen, Tom Djajadiningrat, Loe Feijs, Simon Fraser,

Steven Kyffin, and Dagmar Steffen, 196–202. Wellington,

New Zealand: Victoria University of Wellington.

Burry, Jane, Daniel Davis, Brady Peters, Phil Ayres, John Klein,

Alexander Peña de Leon, and Mark Burry. 2011. “Modelling

Hyperboloid Sound Scattering: The challenge of simulating,

fabricating and measuring.” In Computational Design

Modeling: Proceedings of the Design Modeling Symposium Berlin

2011, edited by Christoph Gengnagel, Axel Kilian, Norbert

Palz, and Fabian Scheurer, 89-96. Berlin: Springer-Verlag.

155

7.1	 Introduction

To be writing code in Copenhagen at 3 a.m. was not an unusual occurrence.

We had spent the past week in Copenhagen sleeping only a couple of hours

each night as we rushed to get ready for SmartGeometry 2011. It turns out

casting plaster hyperboloids is hard, much harder than the model makers

from Sagrada Família make it look. And it turns out joining hyperboloids is

hard, much harder than Gaudí makes it seem.1 When figure 57 was taken,

we were just six hours away from the start of SmartGeometry 2011, and

we were all exhausted from days spent fighting with the geometry and each

other. So naturally, rather than verify the plaster hyperboloids joined as

expected, we went to sleep for a couple of hours.

Sleeping is a decision we would come to regret two days later.

The workshop was half way through and we had cut the formwork for

roughly forty hexagonal plaster hyperboloid bricks, when we realised

none of the hyperboloids joined together. Instead of sitting flush against

one another, the brick’s wooden sides were angled such that they could

only join together if there were slight gaps between the bricks. The error

was small (less than 5mm on a brick 450mm wide) but these small errors

accumulated through the stacking of the bricks, which caused visible gaps

in the upper courses and prevented the topmost courses coming together

at all (fig. 58). Without the time to recut the formwork, that single small

1	 The Responsive Acoustic Surface was built to test the hypothesis that hyperboloid
geometry contributed to the diffuse sound of the interior of Antoni Gaudí’s Sagrada
Família. For more information about the rationale for using hyperboloids in the
Responsive Acoustic Surface and for more information about the surface’s acoustic
properties, see Modelling Hyperboloid Sound Scattering by Jane Burry et al. (2011).

Figure 57: John Klein
(left) and Alexander
Peña de Leon (right) in
a Copenhagen hotel at
3 a.m. writing code six
hours before the start of
SmartGeometry 2011.

156

Figure 58: The
responsive acoustic
surface installed at
SmartGeometry 2011.
Slight gaps are still
visible in the top- and
bottom-most rows.

157

Figure 59: The
responsive acoustic
surface (foreground)
with its counterpart, the
flat benchmark surface
in the background. The
top of the responsive
acoustic surface curves
slightly backwards due
to a small error in the
shape of the brick. Bolts
between the plywood
frames help to pull the
bricks together but also
put the frame under a lot
of stress.

158

error threatened the whole viability of the project. Once again we were

without sleep. Thankfully the timber formwork had enough pliability to

accommodate the error, although if you look closely at figure 59 you can see

the timber is under such tension the whole wall bows slightly backwards.

This single small error can be attributed to exhaustion: in our fatigued state

we did not verify that the code’s math generated the expected intersections

between hyperboloids. This could be seen as a failing of our project

management skills – a failure to allocate sufficient time to verify the code’s

outputs. But it could also be seen as a failing of the coding environment

– a failure to provide immediate feedback about what the math in the code

was producing. The notion that programming environments fail to provide

designers with immediate feedback forms the foundation of Bret Victor’s

(2012) manifesto, Inventing on Principle. Victor, a user experience designer

best known for creating the initial interface of Apple’s iPad, describes how

the interface to most programming environments leaves the designer

estranged from what they are creating:

Here’s how coding works: you type a bunch of code into a text editor,

kind of imagining in your head what each line of code is going to do.

And then you compile and run, and something comes out… But if

there’s anything wrong, or if I have further ideas, I have to go back to

the code. I go edit the code, compile and run, see what it looks like.

Anything wrong, go back to the code. Most of my time is spent working

in the code, working in a text editor blindly, without an immediate

connection to what I’m actually trying to make.

Victor 2012, 2:30

In this case study I follow a similar line of thinking, observing that

typically for architects there is a significant delay between editing

code and then, much later, realising your plaster hyperboloids do not

fit together as expected. As such, I use this case study to consider how

coding environments could provide architects with more immediate

feedback about what their code produces. I begin by discussing the history

of interactive programming and the lack of interactive programming

environments for architects. I then describe an interactive programming

environment I created, dubbed Yeti, and compare Yeti’s performance to

two existing coding methods on three architecture projects (including

revisiting the plaster hyperboloids of the Responsive Acoustic Surface).

But first I want to return to Bret Victor’s manifesto.

159

7.2	 The Normative

Programming Process

In Inventing on Principle, Bret Victor (2012, 2:30) describes the normative

programming process as, “edit the code, compile and run, see what it looks

like.” This sequence of events is commonly known as the Edit-Compile-Run

loop. In the loop (fig. 60), the programmer edits the text of the code [1],

presses a button to activate the code [2], and then waits. They wait first for

the computer to validate the code [3], then they wait for the computer to

compile the code into machine-readable instructions [4], and finally they

wait for the computer to run this set of instructions [5]. Only then can the

programmer see what their code produces [6]. Victor (2012, 18:00) says

that good programmers shortcut this process by mentally simulating the

running of code – a somewhat perverse situation considering they are more

often than not sitting in front of a machine dedicated to doing just that.

3 Code is validated

4 Code is compiled

5 Code is run

1 User writes code

2 User presses run

6 User sees output

The IDE

The viewport

The interpreter

Figure 60: The
Edit-Compile-Run loop
for a Rhino Python
script. A designer must
go through this loop
every time they want
to see what their code
produces. In the best
case it takes a couple
of seconds to move
between writing code [1]
and seeing the output
[6] but this period can
be much longer if the
script is computationally
intensive to run.

160

For architects, the delayed feedback from the Edit-Compile-Run loop proves

problematic. Ivan Sutherland (1963, 8) disparagingly called this “writing

letters to rather than conferring with our computers.” Yet shortcutting

this process using mental simulation, as good programmers often do,

clashes with Nigel Cross’s (2011, 11) observation that “designing, it

seems, is difficult to conduct by purely internal mental processes.” Cross’s

contention that designers need to have continual feedback, separate

from their internal monologue, is shared by Sutherland (1965), Victor

(2012), and many others (Schön 1983; Lawson 2005; Brown 2009). This

view is reinforced by design cognition research that shows any latency

between a designer’s action and the computer’s reaction is problematic for

architects since delays exacerbate change blindness, which makes it hard

for designers to evaluate model changes (Erhan et al. 2009; Nasirova et al.

2011; see chap. 2.3). With designers potentially blind to the changes they

make, Rick Smith (2007, 2) warns that a change to a parametric model

“may not be detected until much later in the design phase, or even worse,

in the more expensive construction phase.” Smith’s warning rings true with

the hyperboloid bricks of the Responsive Acoustic Surface, where feedback

from a coding error was not apparent until the bricks were stacked during

the construction phase.

The Edit-Compile-Run loop prevails, argues Victor (2012, 28:00), because

most programming languages “were designed for punchcards” where

“you’d type your program on a stack of cards, and hand them to the

computer operator, and you would come back later” – an “assumption

that is baked into our notions of what programming is.” While punchcards

may explain the origins of the Edit-Compile-Run loop in programming,

there have been many developments in programming since the days of

punchcards. In particular, significant developments have been made to the

tools programmers use to write code, known as Integrated Development

Environments (IDEs). Modern IDEs often augment the Edit-Compile-Run

loop so programmers do not have to wait for feedback. For example, some

IDEs identify simple logical errors before the code is run, and some IDEs

suggest and explain programming commands while programmers are

writing them (a feature known as autocompletion). Other IDEs allow the

basic editing of running code, which enables programmers to make minor

changes without cycling back through the edit-compile-run loop (this is

known as interactive debugging). These types of IDE features makeup part

of Section 2.3.1 of the Software Engineering Body of Knowledge Version 1.0

3 Code is validated

4 Code is compiled

5 Code is run

1 User writes code

2 User presses run

6 User sees output

The IDE

The viewport

The interpreter

161

(Hilburn et al. 1999); a section of knowledge that often reinforces the

notion that programming languages were designed for punchcards, while

also offering ways of making Edit-Compile-Run loop more interactive.

The interactive feedback mechanisms of many modern IDEs have

not filtered down to the environments architects write code in.

Like professional programmers, architects use languages based on the Edit-

Compile-Run loop, with Leitão, Santos, and Lopes (2012, 146) pointing

out that even popular languages like “RhinoScript are a descendant of a

long line of BASIC dialects that started much earlier, in 1964.” But unlike

professional programmers, who have the advantages of cutting edge

IDEs, Leitão, Santos, and Lopes (2012, 143) say that in the context of

architecture “the absence of a (good) IDE requires users to either remember

the functionality or read extensive documentation.” Thus architects are

left to contend with the historic Edit-Compile-Run loop without many of

the interactive conveniences present in the IDEs used by modern software

engineers. This lack of interactivity in the programming process causes

pronounced latency between the designer writing code and the computer

generating the geometric results, which makes evaluating code changes

potentially difficult for architects.

7.3	 The Interactive

Programming Process

Interactive programming (also known as live programming) seeks to remove

any latency between writing and running code. Instead of a programmer

activating the Edit-Compile-Run loop every time they want to see what

their code produces, a programmer using interactive programming directly

changes the code of an already running program.2 Bret Victor (2012)

demonstrates interactive programming with a programming environment

he created for drawing and animating two-dimensional objects (fig. 61).

When Victor changes code in the text editor, the corresponding image

produced by the code changes instantly – without Victor manually pressing

2	 Interactive programming is primarily about changing code while it runs. Although this is
useful for displaying code changes in real time, there are many other uses for interactive
programming. A common use case is to update software that cannot be shut down (for
example, life support systems and certain infrastructure systems). Instead of compiling
and running a new instance of the software, software engineers can use interactive
programming to apply code changes to the existing software while it runs.

Figure 61: Bret Victor’s
(2012) IDE from
Inventing on Principle.
Since the programming
environment is
interactive, the code and
the image are always
in sync. As shown
in the three frames,
changes to the code also
immediately change
the image produced
by the code – without
the designer manually
activating the Edit-
Compile-Run loop to
see them.

Figure 62: Yeti, an
interactive programming
plugin for Rhino.
Like with Victor’s IDE
(fig. 61), the code and
the model are always
in sync. Whenever the
code changes, the model
produced by the code
automatically changes
as well.

164

a button to execute the Edit-Compile-Run loop. With the code always

in sync with the image it produces, Victor (2012, 2:00) argues that his

environment gives designers “an immediate connection to what they

are creating.”

To assist architects creating parametric models I developed an interactive

programming environment named Yeti (fig. 62). On first glance Yeti

looks similar to Victor’s interactive programming environment, however,

there are a number of key differences between the two IDEs. The most

obvious difference is that Victor’s environment focuses on the real-time

drawing of two-dimensional objects, while Yeti supports the real-time

remodelling of three-dimensional objects (since three-dimensional objects

generally require more computational resources, making the calculations

in real time is significantly more challenging than with two-dimensional

objects). The second significant difference is that Victor’s presentation of

his environment in January 2012 comes a number of months after I first

presented Yeti, and released Yeti’s source code, in May 2011. While Victor

was not the first to create an interactive programming environment, I have

chosen to cite him both because he clearly articulates the problems with

the normative programming process, and because his legacy of creating

interfaces for Apple adds credibility to the argument that interactive

environments, like Yeti, are important emerging areas of research

for designers.

While Yeti predates Victor’s programming environment by a couple of

months, a number of other interactive programming environments predate

both of them by many years. The origins of interactive programming

date back to the programming languages LISP (first version: 1958) and

SmallTalk (first version: 1971), both of which allow programmers to modify

code while it runs. The initial emphasis was on updating software without

needing to shut down running programs (useful for critical systems). These

techniques were extended, in particular by musicians, to allow the real-

time modification of code. For musicians, these interactive programming

environments enable them to modify code driving musical compositions

whilst immediately experiencing the modification’s sonic implications. The

first performance with an interactive environment was by Ron Kuivila at

STEIM in 1985 using the FORTH programming language (Sorensen 2005).

In the early 1990s, interactive textual programming environments gave

way to interactive visual programming environments like Max/MSP (the

165

precursors of the visual programming environments architects use today).

While visual programming remains popular with musicians, a number of

new interactive textual programming languages have emerged, including

the Smalltalk based Supercollider (McCartney 2002) as well as the LISP

based ClunK (Wang and Cook 2004) and Impromptu (Sorensen 2005).

Outside the domain of music there is a scattering of interactive

programming environments aimed at designers, such as SimpleLiveCoding

for Processing and the widely used Firebug for CSS editing. While real-time

interactive programming suits these creative contexts, the computational

stress of three-dimensional design has meant that architects – prior to my

research – have been unable to utilise interactive programming.

The crux of all interactive programming environments is removing

the latency between writing and running code. Existing interactive

programming environments achieve this in a number of ways:

•	 Automation Rather than waiting for the user to manually tell the Edit-

Compile-Run loop to execute, the loop can be set to run automatically

and display the results whenever the code is changed – as is done

in SimpleLiveCoding (Jenett 2012). This is a bit like stop-motion

animation; the user sees a single program adapting to code changes but

really they are seeing a series of discrete programs one after the other

(like frames in a movie). In order for this animation to feel responsive,

the elapsed time between the user changing code and the completion

of the Edit-Compile-Run loop should ideally be a tenth of a second

and certainly not much more than one second (Miller 1968, 271;

Card, Robertson, and Mackinlay 1991, 185). For simple calculations

these time restrictions are manageable. However, for complicated

calculations it becomes impractical to recompile and recalculate the

entire project every time the code changes, especially if the change only

impacts a small and discrete part of the finished product.

•	 Sequencing For musicians using interactive programming, changes

must happen relative to an underlying time signature. Code from

Supercollider (McCartney 2002), ClunK (Wang and Cook 2004),

and Impromptu (Sorensen 2005) all generate timed sequences of

166

actions for the computer to perform. As the code changes, new

actions are automatically queued into the sequence while old actions

are seamlessly discontinued (Sorensen 2005), which avoids the

stopping and restarting necessary when using the Edit-Compile-Run

loop. This method has been adapted to generate simple geometry

in time to music (Sorensen and Gardner 2010, 832). However, for

architects doing computationally demanding geometric calculations,

generating geometry rhythmically is not as important as generating

geometry quickly. For this reason, sequencing is unsuitable in an

architectural context.

•	 Hot-Swapping The Edit-Compile-Run loop recompiles every line of

code even if some lines have not changed since the last time the loop

was activated. Instead of compiling every line of code, hot-swapping

allows small chunks of code to be independently compiled and then

integrated with the unchanged parts of the program – while the overall

program continues to run. This reduces the latency of compilation

but does not reduce the latency of running the code.3 Since geometric

calculations take orders of magnitude longer than the compilation of

code, the savings from hot-swapping in an architectural context are

likely comparable to those of automation.

Although there are a range methods for reducing the latency between

writing and running code, none of the existing methods are suited to

the unique challenges of performing geometric calculations in real time.

These are challenges not present in other design disciplines currently using

interactive programming (such as web-design, musical performance, and

two-dimensional animation). Despite the range of textual interactive

programming environments available to other designers, architects

currently have no option but to contend with the separation induced by

the Edit-Compile-Run loop.

3	 Although the code continues to run when it is hot-swapped, there is no way of easily
knowing how the hot-swapped code transforms the geometric model. Therefore, to
update the model, the code must be rerun, which means hot-swapping in this context
only saves compilation time and not running time.

167

7.4	 Interactive Visual

Programming

While none of the existing interactive textual programming environments

are particularly suited to architects, many non-textual programming

environments allow the interactive creation of geometry. Grasshopper,

Houdini, and GenerativeComponents all overcome the problem of

performing geometric calculations in real time by representing geometric

relationships with a Directed Acyclic Graph (DAG) (Woodbury 2010,

11-22). As explained in chapter 5.3, a DAG is a type of flow-chart where

nodes represent geometric operations and directed edges represent the

flow of data between pairs of nodes. When a node is changed, the model

is updated by propagating the changes along the directed edges to update

the affected nodes. This minimises the calculations involved in updating

the model since the only nodes recalculated are those affected by the

change. Rather than recalculating every geometric operation, as with the

Edit-Compile-Run loop, the selective updating of a DAG saves unnecessary

geometric calculations, greatly compressing the time between writing and

running code.

While visual programming enables architects to work interactively, there

are still limitations when compared to textual programming. In the previous

chapter (chap. 6) I demonstrated that visual programming environments

do not support structure as elegantly as many textual programming

environments do. Partly citing my research from the previous chapter,

Leitão, Santos, and Lopes (2012, 160) conclude, “learning a textual

programming language takes more time and effort than learning a visual

programming language, but this effort is quickly recovered when the

complexity of the problems becomes sufficiently large.” I suspect visual

programming is easier to learn partly because the interactivity of visual

programming provides the continuous feedback Green and Petre (1996, 8)

say novice programmers require. While interactive visual programming

languages are successful in the domain of architecture, there remains an

opportunity to create an interactive textual programming language that

combines the structural benefits of textual programming with the ease of

use brought about by the interactivity of visual programming.

168

Yeti is an interactive textual programming environment I developed to

support the creation of three-dimensional geometry. At first glance Yeti

looks much like any other textual programming environment, a large

textbox for writing code is positioned underneath a horizontal menu of

icons (fig. 63). The icons give the only outward hint of Yeti’s interactive

behaviour: instead of an icon for running the code there is an icon for

pausing Yeti’s continuous evaluation of the code. Beyond these icons the

difference between Yeti and other IDEs only really becomes apparent when

the designer begins writing code. Rather than writing a block of code and

then pressing the run icon to see geometry generated by the code (through

the Edit-Compile-Run loop), designers writing code in Yeti always see what

their code generates. The geometry is in sync with the code that produces

it, so every time the code changes the geometry automatically changes

as well.

In order to perform geometric calculations fast enough that they

feel interactive, Yeti employs a DAG to coordinate recalculating the

geometry. This is essentially the same concept powering the interactivity

of the visual programming environments Grasshopper, Houdini, and

GenerativeComponents. However, Yeti’s DAG is not generated through a

visual interface, rather it is defined textually through the relational data

format YAML.

Figure 63: The Yeti
interface. The primary
element is a textbox for
writing code. The code
within the textbox is
automatically coloured:
numbers (black),
geometry (blue), names
(red), references to
named geometry (green).
Above the textbox are a
row of icons, from left to
right: save, open, pause
interactive updating,
force update, and bake
geometry (export to
Rhino). The geometry
created by the code is
displayed in another
window (not shown).

7.5	 Introducing Yeti

169

The YAML Language

YAML’s inventor, Clark Evans (2011), describes YAML as a “human friendly

data serialization standard.” While YAML is technically a data format, Yeti

uses it like a dataflow programming language to describe the structure of a

DAG.4 As such, Yeti’s code is paradigmatically distinct from the procedural

programming languages that underlie most other textual programming

environments used by architects (see chap. 5.2). Yeti may therefore seem

initially unfamiliar to designers versed in procedural programming.

However, YAML’s relatively minimal syntax is fairly easy to pickup.

YAML comprises primarily of key:value pairs. The key is always assigned

the value following the colon. For example, the code to assign a variable

the value of 10 is:

variable: 10

More complicated values are assigned through a list of key:value pairs

that are separated from the parent key with indentation. For example, a

point at the coordinate (-10,10,13) can be written as:

4	 By itself YAML is not a programming language since it describes data rather than
computation (the concept of Turing completeness is therefore not applicable to YAML).
But in Yeti this distinction is blurred because the YAML data describes the structure of a
DAG, which in turn does computation. Some will say YAML is a programming language
in this context, others will say it is still a data format.

basePoint
x
y
z

Line
start

end

-10
10
13

Point
x
y
z+20

Point

basePoint
x
y
z

Line

start

end

20
10

Point
x
y
z+20

Point

column

basePoint
x
y
z

Line

start

end

2
30

Point
x
y
z+20

Point

column

x
y
z

-10
10
13

Point

DAG
Becomes

variable: 10

--- !column
point: !basePoint

line:
 start: *basePoint
 end:
 x: *basePoint.x
 y: *basePoint.y
 z: (*basePoint.z+20)
...

column:
 basePoint:
 x: 20
 y: 10

column:
 basePoint: 2 30

point: &basePoint
 x: −10
 y: 10
 z: 13

line:
 start: *basePoint
 end:
 x: *basePoint.x
 y: *basePoint.y
 z: (*basePoint.z+20)

point:
 x: −10
 y: 10
 z: 13

point:
 x: −10
 y: 10
 z: 13

CodeThese key:value pairs map directly into a DAG. Every key represents a

node in the graph, while values express either a property of the node, or a

relationship to another node. For example:

basePoint
x
y
z

Line
start

end

-10
10
13

Point
x
y
z+20

Point

basePoint
x
y
z

Line

start

end

20
10

Point
x
y
z+20

Point

column

basePoint
x
y
z

Line

start

end

2
30

Point
x
y
z+20

Point

column

x
y
z

-10
10
13

Point

DAG
Becomes

variable: 10

--- !column
point: !basePoint

line:
 start: *basePoint
 end:
 x: *basePoint.x
 y: *basePoint.y
 z: (*basePoint.z+20)
...

column:
 basePoint:
 x: 20
 y: 10

column:
 basePoint: 2 30

point: &basePoint
 x: −10
 y: 10
 z: 13

line:
 start: *basePoint
 end:
 x: *basePoint.x
 y: *basePoint.y
 z: (*basePoint.z+20)

point:
 x: −10
 y: 10
 z: 13

point:
 x: −10
 y: 10
 z: 13

Code

170

basePoint
x
y
z

Line
start

end

-10
10
13

Point
x
y
z+20

Point

basePoint
x
y
z

Line

start

end

20
10

Point
x
y
z+20

Point

column

basePoint
x
y
z

Line

start

end

2
30

Point
x
y
z+20

Point

column

x
y
z

-10
10
13

Point

DAG
Becomes

variable: 10

--- !column
point: !basePoint

line:
 start: *basePoint
 end:
 x: *basePoint.x
 y: *basePoint.y
 z: (*basePoint.z+20)
...

column:
 basePoint:
 x: 20
 y: 10

column:
 basePoint: 2 30

point: &basePoint
 x: −10
 y: 10
 z: 13

line:
 start: *basePoint
 end:
 x: *basePoint.x
 y: *basePoint.y
 z: (*basePoint.z+20)

point:
 x: −10
 y: 10
 z: 13

point:
 x: −10
 y: 10
 z: 13

Code

basePoint
x
y
z

Line
start

end

-10
10
13

Point
x
y
z+20

Point

basePoint
x
y
z

Line

start

end

20
10

Point
x
y
z+20

Point

column

basePoint
x
y
z

Line

start

end

2
30

Point
x
y
z+20

Point

column

x
y
z

-10
10
13

Point

DAG
Becomes

variable: 10

--- !column
point: !basePoint

line:
 start: *basePoint
 end:
 x: *basePoint.x
 y: *basePoint.y
 z: (*basePoint.z+20)
...

column:
 basePoint:
 x: 20
 y: 10

column:
 basePoint: 2 30

point: &basePoint
 x: −10
 y: 10
 z: 13

line:
 start: *basePoint
 end:
 x: *basePoint.x
 y: *basePoint.y
 z: (*basePoint.z+20)

point:
 x: −10
 y: 10
 z: 13

point:
 x: −10
 y: 10
 z: 13

Code

basePoint
x
y
z

Line
start

end

-10
10
13

Point
x
y
z+20

Point

basePoint
x
y
z

Line

start

end

20
10

Point
x
y
z+20

Point

column

basePoint
x
y
z

Line

start

end

2
30

Point
x
y
z+20

Point

column

x
y
z

-10
10
13

Point

DAG
Becomes

variable: 10

--- !column
point: !basePoint

line:
 start: *basePoint
 end:
 x: *basePoint.x
 y: *basePoint.y
 z: (*basePoint.z+20)
...

column:
 basePoint:
 x: 20
 y: 10

column:
 basePoint: 2 30

point: &basePoint
 x: −10
 y: 10
 z: 13

line:
 start: *basePoint
 end:
 x: *basePoint.x
 y: *basePoint.y
 z: (*basePoint.z+20)

point:
 x: −10
 y: 10
 z: 13

point:
 x: −10
 y: 10
 z: 13

Code

Relationships between geometry can be established by labelling keys with

names beginning with an ampersand [&] and then referencing their names

later (references begin with an asterisk [*]). For example, the following

code creates a point named basePoint and generates a line extending

vertically from basePoint:

Yeti extends the YAML language so that designers can define new keys.

To create a key, a designer must first create a prototype object for the

key. The prototype object begins with the YAML document marker

[---] immediately followed by the name of the object (names start with

an exclamation mark [!]). Under this header, the designer defines the

geometry of the prototype object. Any geometry given a name starting

with an exclamation mark [!] becomes a parameter of the object that

can be specified when the object is instantiated. The end of the object is

delimitated by the YAML document marker […]. For example, the code

from the preceding example can be turned into an object named column

and then used to generate two columns starting at (20,10,0) and (2,30,0),

like so:

basePoint
x
y
z

Line
start

end

-10
10
13

Point
x
y
z+20

Point

basePoint
x
y
z

Line

start

end

20
10

Point
x
y
z+20

Point

column

basePoint
x
y
z

Line

start

end

2
30

Point
x
y
z+20

Point

column

x
y
z

-10
10
13

Point

DAG
Becomes

variable: 10

--- !column
point: !basePoint

line:
 start: *basePoint
 end:
 x: *basePoint.x
 y: *basePoint.y
 z: (*basePoint.z+20)
...

column:
 basePoint:
 x: 20
 y: 10

column:
 basePoint: 2 30

point: &basePoint
 x: −10
 y: 10
 z: 13

line:
 start: *basePoint
 end:
 x: *basePoint.x
 y: *basePoint.y
 z: (*basePoint.z+20)

point:
 x: −10
 y: 10
 z: 13

point:
 x: −10
 y: 10
 z: 13

Code

171

The user defined keys help structure the Yeti code. Like a module they

encapsulate code with defined inputs and outputs (denoted by the

exclamation mark [!]). However, they go further than the modules

discussed in chapter 6 by providing more object-oriented features like

instantiation (the creation of multiple instances that draw upon the same

prototype) and inheritance (one user defined key can be based on another

user defined key). In essence, YAML allows Yeti to mix the structure of

textual languages with the performative benefits of directed acyclic graphs.

The Yeti Development Environment

There are a number of other interactive features in the Yeti development

environment. Many of these are commonly part of the IDEs software

engineers use but, according to Leitão, Santos, and Lopes (2012, 143),

they are seldom a part of the IDEs architects use. The following describes

some of Yeti’s main interactive features.

Autocompletion:

As a designer types, Yeti predicts what the designer is typing and suggests

contextually relevant keys, names, and objects. This saves the designer

from looking up keys and parameters in external documentation.

Figure 64: Yeti
offering autocomplete
suggestions as the
designer types. Left:
After the designer types
the letter L, Yeti lists all
the keys that start with
the letter L. When the
designer selects a key,
Yeti will then suggest
parameters for that
key. Right: The designer
begins typing a reference
and Yeti produces a
list of names used in
the code.

172

Robust Error Handling:

Yeti highlights errors as they are written (common errors include spelling

mistakes, syntax errors, and duplicate names). Errors generally cause

procedural languages to stop running because there is no clear way to

progress past an error in a sequence of instructions. Since Yeti does not

use a sequence of instructions but rather a dataflow language, Yeti can

continue to run code that contains errors by only parsing the error-free

portions of the code into a DAG. This is important in an interactive context

since evaluating code while it is being written often requires evaluating

incomplete code that contains errors.

Figure 66: Left: The
column object’s code
expanded. Right: The
column object’s code
collapsed (the code
is hidden but still
functioning).

Code Folding:

The code for a prototype object can fold into a single line, effectively hiding

it. These folds allow the user to improve juxtaposability by hiding irrelevant

parts of the code while exposing the parts currently important.

Figure 65: Errors in
Yeti are coloured grey
and underlined. In both
of these examples, Yeti
continues to function
even though there are
errors in the code. Left:
Radius is not a valid
parameter for a line, so
it is marked as an error.
Right: Since there is
no key named &b, the
pointer *b is marked as
an error; and because
there are two keys
named &a, the second
one is highlighted as
an error.

173

Interactive Debugging:

To help clarify the often-enigmatic connection between code and geometry,

clicking on any key in Yeti highlights the geometry controlled by that key.

A parameter window is also generated so that the user can drill down and

inspect all the properties driving the geometry. Similarly, clicking on any

referenced name highlights where the reference comes from in the code

and the geometry it refers to. Yeti is able to provide all this information

since the keys in the YAML code are directly associated with parts of the

model’s geometry via nodes in the DAG.

The impediments to generating geometry with interactive programming

are overcome in Yeti by employing a DAG to manage geometric calculations.

The DAG helps reduce the latency between writing code and seeing

the geometry produced. Furthermore, the DAG also helps power other

interactive features like robust error handling and interactive debugging.

In the following pages I consider how these features perform when used

on three design projects, and I compare this performance to that of other

programming environments available to architects.

Figure 67: Clicking on
the word point: in the
code produces a window
allowing the designer to
inspect all the properties
and parameters of the
point. At the same
time, the selected code
and the corresponding
geometry are highlighted
in orange.

174

7.6	 Benchmarking Yeti

Method

To test the viability of generating parametric models with interactive

programming, I carried out three design tasks using Yeti (fig. 68). It was not

clear whether interactive textual programming would cope with creating

a parametric model, let alone creating one in the midst of an architecture

project. I therefore selected three design tasks that stressed a number of

essential parametric techniques while letting me clearly isolate and observe

the performance of interactive programming. The first two design tasks

come from a pair of tutorials Axel Kilian developed in 2005. The tutorials

teach designers to model a pair of parametric roofs and introduce “several

key parametric modelling concepts” (Woodbury, Aish, and Kilian 2007,

226) such as arrays, constraints, and instantiation. Recreating the tutorials

in Yeti ensures these key parametric modelling concepts are also possible

with interactive programming. The third design task revisits the plaster

hyperboloids of the Responsive Acoustic Surface. Given the computational

challenges in calculating the intersections between hyperboloids, the

project is an ideal setting for finding the limits of Yeti’s interactivity.

As a benchmark I repeated the three design tasks with two established

methods of programming, both of which I am adept at: interactive visual

programming in Grasshopper (version 0.8.0052), and textual programming

with Rhino Python (in Rhino 5, version 2011-11-08). By repeating the

design tasks I was able to compare Yeti’s performance to that of established

programming methods through the metrics established in chapter 4.

In particular I was interested in the following qualitative metrics:

•	 Functionality: Are all the modelling tasks able to be performed by

every programming method?

•	 Correctness: Do programs do what is expected?

•	 Ease of use: Are the modelling interfaces easy to use?

Figure 68: The three
benchmark projects
in Yeti. Left to right:
Kilian’s first roof,
Kilian’s second roof,
and the hyperboloids
from the Responsive
Acoustic Surface.

175

I was also interested in the following quantitative metrics from chapter 4.3:

•	 Construction time: How long did the respective models take to build?

•	 Lines of Code: How verbose were the various programming methods?

•	 Latency: How quickly did code changes become geometry?

The intention is not to definitively say one programming method is better

than the other, rather the intention is to capture the primary differences

between these programming methods while verifying that Yeti can

complete the same key design tasks. Recent studies employing a similar

method include: Janssen and Chen’s (2011) comparison of the visual

programming environments Grasshopper, GenerativeComponents, and

Houdini; Leitão, Santos, and Lopes’s (2012) comparison of Grasshopper

and the textual language Rosetta; and Celani and Vaz’s (2012) comparison

of Grasshopper and the textual language Visual Basic. The first hand

accounts in these studies are largely successful at establishing the primary

differences between the programming methods they compare, differences

I aim to establish in this case study of interactive textual programming.

Benchmark 1 and 2: Kilian Roofs

When Axel Kilian developed his pair of parametric modelling tutorials

in 2005, neither Grasshopper nor Rhino Python had been invented and

GenerativeComponents was still two years away from being commercially

available.5 For architects who had never encountered parametric modelling,

Kilian’s tutorials showcased “several key parametric modelling concepts

and quickly yielded a form with some architectural credibility” (Woodbury,

Aish, and Kilian 2007, 226). In particular, each tutorial teaches students

how to model a roof that adapts to its context, while also introducing

students to dataflows, arrays, b-splines, and the instantiation of objects

that are topologically identical but physically different. To complete these

tutorials in Grasshopper, Rhino Python, and Yeti, all the programming

methods must be capable of performing the essential parametric modelling

techniques outlined in Kilian’s tutorials.

5	 It is remarkable to consider how much parametric modelling has changed in the seven
years since Kilian’s tutorials, both in terms of the number of architects using parametric
models and in terms of range of parametric modelling environments available to
architects. While Kilian’s tutorials are just seven years old, in many respects they have
an historic credence through which it is possible to track the development of parametric
modelling.

176

Figure 69: Four
variations of Kilian’s first
roof generated with Yeti.
The roof rests on a grid
of columns whose height
varies to accommodate a
tree under the roof. The
height of any particular
column is a function of
the distance between
the column and a point
representing the tree.
When the point moves,
the roof readjusts to
allow for the tree’s
new location.

Functionality and Correctness

Both of Kilian’s roofs could be recreated in Grasshopper, Python, and

Yeti. In this sense all the environments were correct: the code from every

modelling environment correctly generated the expected geometry. There

are however differences in functionality. Yeti has a limited geometric

vocabulary in comparison to either Grasshopper or Python. While this

was not a hindrance in creating the roof models, on other projects this

may prevent Yeti from correctly generating the required geometry (at least

until Yeti’s vocabulary is further developed). In this sense Grasshopper

and Python are more functional than Yeti since they both offer what

Meyer (1997, 12) calls, a far greater “extent of possibilities provided by

a system.” Beyond the geometry of the various modelling environments,

there are a number of key differences in functionality that I will expand

upon shortly, including the management of lists, the baking of geometry,

and the creation of custom objects.

Construction Time

The first roof (fig. 69) took me four minutes to build in Grasshopper, six

minutes to build in Yeti and sixteen minutes to build in Python. I recorded

177

myself building the Python model and in the video it is clear that the roof

took a while to build because I spent a lot of time writing code to manage

arrays and bake geometry. Since I had no feedback about whether my

code worked, I then had to spend time testing the Python code by cycling

through the Edit-Compile-Run loop. Both Grasshopper and Yeti have

built-in support for simple arrays and geometry baking so I did not have

to spend time creating them, which led to simpler models and a reduced

construction time.

The second roof (fig. 70) is geometrically more complicated than the first.

In Grasshopper the model took twenty-five minutes to build, involving

many manipulations of the standard array to generate the diagonal pattern.

These array manipulations were less of a problem in Yeti and Python since

both environments allowed me to define a diagonal panel that could then

be instantiated across a surface. Because of the way geometry is generated

relative to axes in Yeti and Python, modelling the roof’s parabolic ribs and

aligning them to the path was surprisingly difficult in both programming

environments. In the end the model took forty minutes in Yeti and sixty-

five minutes in Python.

Figure 70: Four
variations of Kilian’s
second roof generated
with Yeti. The roof
is made an array of
parabolas lofted together
to make a surface that
is then diagonally
crisscrossed with tubes.
The parabolas follow the
path of a curve and if
the curve is adjusted, the
roof readjusts to follow
the curve.

row: &rows
 treeLoc:
 x: 1
 xLoc:
 from: -5
 to: 5

loft: &roof
 addprofiles: *rows.splines

--- !row
unit: &rowOfUnits
 treeLoc: !treeLoc
 unitLoc:
 x: !xLoc
 y:
 from: -5
 to: 5
 visible: 0

spline: !splines
 addpoints: *rowOfUnits.column.end
...

--- !unit
point: !treeLoc
point: !unitLoc
 visible: 0

vector: &toTree
 start: *unitLoc
 end: *treeLoc
 visible: 0

double: &height (10/(*toTree.length + 1))

line: !column
 start: *unitLoc
 direction:
 x: 0
 y: 0
 z: *height
...

class column:
 def __init__(self, location, tree):
 distance = rs.Distance(location, tree);
 height = 10 / (distance + 1)
 self.topPt = Rhino.Geometry.Point3d(location);
 self.topPt.Z = height;
 self.line = Rhino.Geometry.Line(location, self.topPt)

 def getTopPt (self):
 return self.topPt

 def draw(self, doc):
 doc.Objects.AddLine(self.line)

class columnRow:
 def __init__(self, x, tree):
 self.columns = list()
 pts = list()
 for i in range(10):
 self.columns.append(column(Rhino.Geometry.Point3d(x, i, 0), tree))
 pts.append(self.columns[i].getTopPt())
 self.curve = rs.AddInterpCurve(pts)

 def getProfileGUID(self) :
 return self.curve

 def draw(self, doc):
 for col in self.columns:
 col.draw(doc)

tree = Rhino.Geometry.Point3d(0, 0, 0)

rows = list()
profiles = list()
for i in range(10):
 rows.append(columnRow(i, tree))
 profiles.append(rows[i].getProfileGUID())

rs.AddLoftSrf(profiles)

doc = Rhino.RhinoDoc.ActiveDoc

for row in rows:
 row.draw(doc)

doc.Objects.AddPoint(tree)

Figure 71: The roof from
Kilian’s first tutorial
in Yeti (left), Python
(right), and Grasshopper
(bottom). While the
Yeti and Python code
are of a similar length,
the lines of code do
not correspond due
to the differences in
programming paradigms.
The Yeti code is also
noticeably sparser than
the Python code. But
both the Python and
Yeti code looks verbose
when compared to
the equivalent code in
Grasshopper.

Lines of Code

The Yeti scripts and the Python scripts were of a similar length (fig. 71);

the first model required thirty-six lines of code in Yeti and thirty-five in

Python, while the second model required ninety-three lines of code in

Yeti and seventy-eight in Python. Although the programs have a similar

number of lines, there are very few correlations between lines due to the

differences between the two programming paradigms (Yeti being dataflow

based and Python being object-oriented). The Yeti code is noticeably

179

sparser than the Python code and contains on average just ten characters

per line, whereas the Python code contains twenty-five characters per

line. This is predominantly because Python is a general-purpose language,

so differentiating commands generally requires more verbosity than in

Yeti (for example, the point command in Python requires twenty-two

characters [Rhino.Geometry.Point3d] whereas in Yeti it requires just six

characters [point:]).

The size of a visual program is not directly comparable to the size of a

textual program but, having said that, the Grasshopper model for the first

roof does look smaller and less complex than the corresponding textual

programs (fig. 71). The Grasshopper model for the first roof contains

just ten nodes and has a cyclomatic complexity of five, which means it

is about half the size of the median Grasshopper model (see chap. 4.3).

In comparison, the Grasshopper model for the second roof contains

fifty-two nodes and has a cyclomatic complexity of twenty-four (fig. 72).

Figure 72: The roof from
Kilian’s second tutorial
in Grasshopper. The
lack of structure in this
model makes it difficult
to understand the
model’s fifty-two nodes.

The second model begins to exhibit some of the problems typical of larger

unstructured visual programs that I discussed in chapter 6. In particular,

it is almost impossible to infer the model’s function by just looking at the

nodes, and even knowing the model’s function, it is difficult to do things

like identify the nodes that generate the roof shape or understand why four

nodes generate points just past midway in the model. While the code for

the Yeti and Python models can also be hard to understand, the structure

inherent to textual programs at least provides a few clues to aid reading

the models.

180

Latency

Yeti remained interactive while designing both of the roofs. On the first

roof, code changes took on average 50ms to manifest in changes to the

geometry. On the second roof these changes took 27ms. Grasshopper was

similarly responsive, implementing changes on the first model in 8ms and

taking 78ms on the second model. All of these response times fall well

inside Miller’s threshold of 100ms, which is the threshold for a system

to feel immediately responsive (Miller 1968, 271; Card, Robertson, and

Mackinlay 1991, 185). Python fell outside this threshold, taking 380ms

to generate the first model and 180ms to generate the second. These times

only measure the running time of the Python program and do not include

the time the spent activating and waiting for the Edit-Compile-Run loop.

When these other activities are taken into consideration, the Python code

takes on average between one and two seconds to execute.

Ease of Use

Ease of use is hard to define since it depends on the “various levels of

expertise of potential users” (Meyer 1997, 11). The Kilian models

demonstrate that, at the very least, interactive textual programming in Yeti

can match the functionality both of non-interactive textual programming

in Python, and of interactive visual programming in Grasshopper. These

functional similarities, combined with similarities in code length and

slight improvements in construction time, indicate that interactive

programming is a viable way to textually program parametric models.

The reductions in latency are apparent when reviewing the videos of the

various models being created. In the videos of Grasshopper and Yeti, the

geometry is continuously present and changing in conjunction with the

code. The distinction that often exists between making a parametric model

(writing the code) and using a parametric model (running and changing

the code) essentially ceases to exist in Yeti since the model is both created

and modified through the code: toolmaking and tool use are one and the

same. However, it remains to be seen whether the interactivity borne of a

reduced latency improves the ease of use independent of the any particular

user’s expertise.

181

Benchmark 3: SmartGeometry Redux

In preparation for SmartGeometry 2011, the project team experimented

with creating the Responsive Acoustic Surface in a variety of parametric

modelling environments: Grasshopper, Digital Project, and Open

Cascade. To best utilise the relative strengths of the various modelling

environments, the hyperboloid brick was developed in a workflow that

threaded the design between Grasshopper and Digital Project. Changes

in this workflow took many minutes to propagate due to the time taken

in exchanging data between software and the time taken in finding the

intersections between hyperboloids. There was minimal feedback during

this process and, as a result, the final relationship between hyperboloids

was not obvious. The relationship would only become obvious when we

built the hyperboloids, stacked them, and realised they did not quite

fit together. The hyperboloids’ fit comes down to subtle nuances in the

planarity of the intersections. Given the difficulty of calculating these

Figure 73: Four
variations of the
Responsive Acoustic
Surface’s hyperboloid
layout generated with
Yeti. Slight changes in
the hyperboloid position
significantly alter the
shape of the bricks.

182

intersections, the Responsive Acoustic Surface challenges all varieties of

parametric model. By repeating the project with Yeti, the intention was

to see if Yeti could remain interactive on such a challenging project and

to see if the interactivity helped to understand the design better prior

to construction.

Creating an array of hyperboloids was relatively straightforward in Yeti and

not substantively different to distributing panels over the roof in Kilian’s

second tutorial. The challenging part was intersecting the hyperboloids

and then deciding which part of hyperboloids to keep. In a procedural

paradigm this is easily expressed with an if-then-else structure:6 if

part of the hyperboloid is past the intersection plane then delete the part

else keep the part. The if-then-else structure is not yet included in Yeti

primarily because adding it does not seem consistent with the rest of Yeti’s

syntax. As a temporary workaround, the logic for deciding which part of

the hyperboloid to keep was expressed procedurally in Yeti rather than

expressed in Yeti’s YAML code. These challenges indicate some important

functional differences between the dataflow paradigm of Yeti and the

procedural paradigm of other textual languages.

The hyperboloid intersections were too arduous to calculate in real time

with either Grasshopper or Yeti. The project could only be completed

by pausing the interactivity, which effectively reverted Yeti back to the

manual Edit-Compile-Run loop. Being able to revert to this non-interactive

paradigm was useful to grind out the computationally taxing geometry

of the hyperboloids, but reverting to a non-interactive paradigm also

removes the primary impetus for creating Yeti in the first place. So while

interactive textual programming is useful for straightforward calculations,

on computationally difficult projects the Edit-Compile-Run loop may be

inescapable, which possibly makes errors, like those contained in the

original hyperboloid bricks, unavoidable.

6	 The if-then-else structure is one of the three Böhm and Jacopini (1966) identified. They
denote it with the symbol ∏. See chap. 6.2.

183

SmartGeometry Redux Redux: Fabpod

A second iteration of the Responsive Acoustic Surface was developed

as part of a design studio Nick Williams and John Cherrey ran at RMIT

University in 2012 (with assistance from a research team led by Jane Burry

and Mark Burry). The studio considered how the hyperboloid bricks of the

Responsive Acoustic Surface could be adapted to acoustically diffuse sound

in a meeting room. During the studio, the students designed a variety of

meeting rooms for an open-plan office and later constructed one of the

designs, which was dubbed the FabPod.

Based on analysis I had done for the Responsive Acoustic Surface, it was

known that the hyperboloid bricks would only enclose spherical volumes.7

Previous research by Brady Peters and Tobias Olesen (2010) had suggested

that the best acoustic performance would come from non-periodic tilings

of the hyperboloids. For the FabPod, this was achieved by distributing

the hyperboloids irregularly across spherical surfaces, and then trimming

each hyperboloid where it intersected its neighbours. Doing so required

7	 The bricks have a timber frame supporting the edges of the hyperboloids. Since it was
only practical to build the frame from planar sections, the edges of the hyperboloids had
to be planar as well. My analysis for the Responsive Acoustic Surface had demonstrated
that adjoining hyperboloids only had planar edges in a limited range of circumstances:
(1) the adjoining hyperboloids had to be of the same size, (2) the normals had to either
be parallel or converge at a point equidistant from the hyperboloids. This can only occur
if the hyperboloids are distributed on a planar surface with the normals parallel to
the surface normal, or on a spherical surface with the normals pointing towards the
centre. The FabPod uses spherical surfaces since they were shown to have better acoustic
properties.

Figure 74: The entrance
to the FabPod, situated
within the RMIT
DesignHub, Melbourne
(March 2013).

184

finding the intersections between 180 hyperboloids, which was vastly

more complicated than finding the intersections between the 29 regularly

distributed hyperboloids of the Responsive Acoustic Surface. Further

adding to the difficulty, the intersections were needed not only for creating

the construction documentation at the end of the project, but also for

generating models accurate enough to run the acoustic simulations used

regularly throughout the project. Given how often these intersections

were needed, I once again considered whether this process could be

made interactive.

I began re-examining how the hyperboloid intersections were being

generated. In previous parametric models (including the Yeti model) the

hyperboloids were represented as NURBs surfaces and the intersections

were calculated using numeric algorithms. While there are various numeric

algorithms for finding the intersections between NURBs surfaces, in

essence, all the algorithms involve iteratively moving a curve along one

surface until the curve lies within a specified tolerance of the other

surface (Patrikalakis 1993). Analytic equations are an alternative to using

numeric algorithms. An analytic equation derives directly from a surface’s

mathematical formula, which allows the intersection curve to be generated

by directly solving the equation rather than spending computational

resources doing iterative calculations. While analytic equations have some

potential efficiencies, prior to this research, there was no existing analytic

equation for calculating hyperboloid intersections.

Figure 75: Left: An early
study of hyperboloid
intersections that I
produced in January
2011 for the Responsive
Acoustic Surface. The
model proves that
hyperboloids distributed
on a spherical surface
intersect with planar
curves. Right: The
intersections between
hyperboloids also form
a Voronoi pattern;
shown is the output
from the FabPod’s
spherical Voronoi
parametric model.

185

Generating the analytic equation for the hyperboloid intersections was a

multi-stage process. I first proved that the intersection planes between

hyperboloids correspond with the pattern from a spherical Voronoi

algorithm I developed (fig. 75). Lines between the Voronoi pattern and the

sphere centre always correlate with points on the hyperboloid intersection

curves. I derived an analytic algorithm to find these points by taking the

formula for a hyperboloid:

And the formula for a line:

Substituting to eliminate x, y & z:

Which rearranges to give the value of t from the original line formula:

Using this analytic equation I developed a parametric model in

Grasshopper for calculating the FabPod’s hyperboloid intersections.

In the previous Grasshopper and Yeti models, calculating the intersections

between 180 hyperboloids took approximately two and a half minutes

(150,000ms). By utilising the analytic equation I was able to generate

the same intersections in 250ms, which is one six-hundredth of the

previous times and fast enough to feel interactive. With the intersections

calculated so quickly, students in the workshop were able to make many

186

small adjustments to their hyperboloid layouts while receiving real-time

feedback about potential construction problems (edges that were too

short, and hyperboloids that were too close or too far apart; fig. 76).

All of these problems had to be eliminated in order for the FabPod to

be constructible. I experimented with using hill-climbing and dynamic

relaxation to remove the problems, but the search space was too disjointed

to make this type of optimisation viable. Therefore the only way to ensure

the FabPod’s constructability was to move each hyperboloid until the

construction problems were resolved. If students had to wait two and a

half minutes to see the outcome of every movement this would have been

an unbearable task, which makes the real-time feedback supplied by the

analytic algorithm an essential component in the FabPod’s viability.

Typically software engineers caution against spending large amounts of

time optimising algorithms to reduce latency. Bertrand Meyer (1997, 9)

warns, “extreme optimizations may make the software so specialized as

to be unfit for change and reuse.” This is certainly true of my analytic

algorithm, which is so highly tuned to calculating the FabPod’s hyperboloid

intersections that it is of little use to any other project. On the other-

hand, the generalised optimisations of Yeti are applicable in a wide range

of circumstances, but not powerful enough to ensure the viability of the

FabPod. In reducing parametric model latency there is a balance to find

between extendability, correctness, reusability; a balance activated by the

architect’s ability to explore multiple ways of generating parametric models.

Figure 76: Left: The
final spherical Voronoi
pattern used in the
FabPod. The blue and red
lines provide feedback
about the spacing of
the hyperboloids and
their constructability.
Right: The final
parametric model of the
FabPod’s hyperboloid
intersections. The
colours correspond with
construction materials.

187

Figure 77: Panorama
of FabPod in the final
stages of construction
at the RMIT
DesignHub, Melbourne
(February 2013).

188

191

7.7	 Conclusion

Unlike at SmartGeometry 2011, I was not up at 3 a.m. writing code in the

hours before the start of the FabPod workshop. Even more thankfully,

there were no undetected errors lurking in the hyperboloid bricks and the

project was constructed largely without incident. There are many reasons

for this improvement: we knew the geometry better, we had a better

construction system, the project was better managed, and we had better

feedback while we were designing. Rather than blindly typing code and

hoping (as we had done at SmartGeometry 2011) that the code output

was correct, at the FabPod workshop we had immediate feedback regarding

potential construction errors.

Immediate feedback has not always been possible for architects developing

parametric models. Historically, geometric designers had to make a choice:

either use an interactive visual editor, accepting the problems of scale this

raises (see chap. 6); or forgo interactivity in favour of writing the code with

text. Many people, including Ivan Sutherland (1963, 8), Bret Victor (2012),

and Nigel Cross (2011, 11), have suggested that forgoing interactivity is

undesirable since feedback is a vital part of the design process and one best

delivered immediately. Their intuition is backed up by cognitive studies

that show that novice programmers need progressive feedback (Green

and Petre 1996, 8), and that designers suffer from change blindness when

feedback is delayed (Erhan et al. 2009; Nasirova et al. 2011; see chap. 2.3).

In other design disciplines, designers have access to a range of interactive

textual programming environments yet, for architects, interaction and

textual programming were incompatible prior to my research.

In this chapter I have demonstrated how Yeti’s novel method of interactive

textual programming supports architects designing geometry. Unlike

existing methods of interactive programming – which are ill equipped to

accommodate the computational intensity of geometric calculations – Yeti

enables the interactive creation of geometry by using a Directed Acyclic

Graph (DAG) to manage code changes. In order to generate the DAG, Yeti is

based on the relational markup language YAML, which is paradigmatically

different to procedural programming languages but comparable in terms

of construction time, code length, and functionality. Unlike many

192

procedural programming environments, Yeti also incorporates a number

of innovations software engineers have developed to make the Edit-

Compile-Run loop feel more interactive, such as real-time error checking,

autocompletion, and interactive debugging.

By using YAML to create a DAG, Yeti is able to reduce the latency between

writing code and seeing the geometric results. On certain projects, like

Kilian’s two roofs, the reduction in latency transforms a task that designers

would typically do without any feedback into one designers can do with

constant feedback. As a result, writing code and modifying code in Yeti

become one and the same. On other projects, like the hyperboloids of the

Responsive Acoustic Surface, Yeti does not reduce the latency sufficiency

for interaction to occur and Yeti has to fall back on the Edit-Compile-Run

loop. However, the FabPod demonstrates that designers can further reduce

latency by trading off extendability, correctness, and reusability. In the case

of the FabPod, this reduction in latency made a significant contribution

towards identifying and then eliminating any construction problems.

This indicates that qualities of a parametric model’s flexibility – like the

model’s latency – can have a discernible impact on a project’s design.

These qualities can themselves be designed through the composition

of the parametric model or through the selection of the programming

environment. Yeti demonstrates how knowledge from software engineering

can offer a pathway towards more diverse programming environments that

can be tuned for particular attributes of parametric modelling. Yeti is just

one manifestation of this knowledge and there are many more possibilities

that make programming environments for architects an obvious location

for future development.

194

8	 Discussion:
Beyond
Toolmaking

Currently “little explicit connection” exists

between the practice of parametric modelling

and the practice of software engineering, writes

Robert Woodbury (2010, 66). In my research I

have sought to establish such connections by

exploring whether the design of software can

inform the design of flexible parametric models.

More specifically, I have taken three concepts

from the Software Engineering Body of Knowledge

1.0 (Hilburn et al. 1999) and observed, using

a reflective practice methodology, their affect

when applied to the parametric models of various

architecture projects. In the following pages I

reflect upon what these case studies contribute to

our understanding of parametric modelling and,

in particular, our understanding of parametric

modelling’s relationship to software engineering.

I argue there are connections between software

engineering and parametric modelling centred

around shared challenges, shared research

methods, and shared design practices. These

connections position software engineering as an

important precedent for architects; a relationship

that has implications for how parametric

modelling is taught, for how parametric modelling

is integrated in practice, and for how we conceive

of parametric modelling.

195

8.1	 Shared Challenges

The challenges with parametric modelling are rarely reported, although

they easily experienced. Thomas Fischer (2008, 245) concludes his

doctoral thesis by lamenting that firsthand accounts of “failures and

dead-ends … seem to be rare and overshadowed by the great number of

post-rationalised, outcome-focused reports on digital design toolmaking.”

Against this backdrop, one contribution of my research has been to collate

the fragmented reports of parametric modelling failures (see chap. 2.3).

Sometimes these reports are just a single offhand sentence tucked into a five

hundred-page thesis revealing the unnervingly catastrophic behaviour that

if the “topology of a project changes the [parametric] model generally needs

to be remade” (Gerber 2007, 205). Sometimes these reports come from

experts with decades of parametric modelling experience, which inspires

them to write tell-all papers about changes breaking models, about a lack of

reuse, and about changes having unintended consequences (Smith 2007).

These fragmented reports collectively signal that the networks of explicit

functions underlying parametric models are vulnerable to being broken by

the very thing they are designed to accommodate: change (see chap. 2.3).

In many cases the complexity of the parametric relationships leave the

designer with only two choices: delay the project and rebuild the model, or

avoid the change all together and accept an outcome that was not so much

created with a parametric model as much as it was created for a parametric

model. This is a challenge often encountered but rarely published.

Software engineers face similar challenges (see chap. 3.1). Like architects

creating parametric models, software engineers need to express outcomes

in logically precise instructions for the computer. These instructions are

susceptible to being broken as the outcomes of the project inevitably

change with the project’s development. For a period in the 1960s,

scientists feared the breakages would be insurmountable and the limits of

computation would not be computer speed but rather the cognition of the

programmers creating and maintaining software (Naur and Randell 1968,

chap. 7.1). The challenges of 1960s software crisis gave rise to the discipline

of software engineering (see chap. 3.1). These are challenges that software

engineers have been grappling with for decades, challenges that resemble

the fragmented reports of parametric modelling failures.

196

An important caveat is that creating software is similar, but not identical,

to creating architecture. Broadly speaking, parametric models have a

very particular user (often the model’s developer or colleague), product

(typically the product is the architecture rather than the model), team

size (normally just a few people), and project lifetime (often measured in

months) (see chapter 3.2 for more details). None of these idiosyncrasies are

necessarily abnormal in the context of software engineering, but they are

not necessarily common either. This suggests that not all of the challenges

faced by software engineers are equally relevant to architects. For instance,

architects are likely to have more in common with the challenges faced

by a small team of software engineers delivering a project on a tight

schedule than they are with the challenges faced by a large team of software

engineers developing an operating system to last many years. With this

caveat in place, there are many commonalities between the challenges of

architects and software engineers.

In some respects the commonalities are unsurprising. A parametric model

is, after all, simply a type of algorithm (see chap. 2.1; Dino 2012). Even as

far back as 1993, reports were surfacing that parametric modelling was

“more similar to programming than to conventional design” (Weisberg

2008, 16.12). Given the known “common ground” (Woodbury 2010, 66)

between the two practices, the surprise is that almost no literature

connects the struggles of architects with the struggles of software

engineers (Woodbury being one exception but even within his writing

this connection is only tangentially explained). My research suggests that

the challenges architects using parametric models encounter with change

are shared to some degree by software engineers, a connection that has

implications for how architects may address these challenges.

197

8.2	 Shared Methods

The flexibility of a parametric model is often framed in a binary of

failure and success. My research suggests flexibility is far more nuanced.

Parametric models appear to have multiple types of flexibility that are

traded off against one another through modelling decisions. To articulate

these flexibilities in the case studies I have drawn upon the vocabulary

software engineers use to describe qualities of computer code. The case

studies show the applicability of quantitative descriptions like lines of

code, cyclomatic complexity, construction time, modification time, latency,

and dimensionality (see chap. 4.3), as well as Bertrand Meyer’s (1997,

chap. 1) qualitative descriptions of correctness, robustness, extendability,

reusability, compatibility, efficiency, portability, ease of use, functionality,

and timelessness (see chap. 4.4). While these sixteen metrics appear to

give a relatively full picture of flexibility, there is certainly scope for further

connections between shared methods of appraising software engineering

and parametric modelling.

The vocabulary of software metrics helps articulate the differences between

various parametric models in my research. By quantitatively measuring

2002 parametric models generated by 575 designers I have been able to

show that model size and cyclomatic complexity are strongly correlated,

just like they are in software engineering (see chap. 4.3). The survey also

established that the average Grasshopper model contains twenty-three

nodes, with a high cyclomatic complexity, and virtually no structure

(see chap. 4.3 & 6.3). This is first time a large collection of architectural

parametric models has been analysed, and it is perhaps the first description

of parametric modelling not reliant upon firsthand accounts. In the case

studies I was able to combine the quantitative and qualitative metrics

to triangulate a more comprehensive understanding of each parametric

model’s flexiblity. For example, in the interactive programming case

study (chap. 7) it was shown that Yeti’s impact on model latency also

had implications for the construction time, functionality, ease of use,

and correctness of the model. Being able to describe the flexibility of a

parametric model using a vocabulary more nuanced than the current

binary of failure and success is a potentially important contribution.

It is important to caution that these measurements are not necessarily

predictors of model behaviour. A model may have a low cyclomatic

198

complexity and low latency, be robust and easy to use, but still break with

an unanticipated change. Another model, a model that looks to be in far

worse condition, may go through the same changes effortlessly. In a similar

vein, these metrics are unlikely to measure successfully a project’s progress

or quality. Attempts to manage programmers using similar metrics have

never been widely successful, which has led one prominent advocate of

software engineering metrics, Tom DeMarco, to recently say:

My early metrics book, Controlling Software Projects: Management,

Measurement, and Estimation (1982), played a role in the way many

budding software engineers quantified work and planned their

projects. In my reflective mood, I’m wondering, was its advice correct

at the time, is it still relevant, and do I still believe that metrics are a

must for any successful software development effort? My answers are

no, no, and no.

Tom DeMarco 2009, 96

This is a significant retraction from a software engineer perhaps best

known for coining the adage, “you can’t control what you can’t measure”

(DeMarco 1982, 3). Although this adage may not ring true, and although

software metrics may not be useful in predicting parametric model

behaviour, they are still a valuable vocabulary for researchers describing

what a model has done.

In applying these various metrics I have built upon the research methods

shared between software engineering and architecture. These methods are

already connected to some degree, since software engineers and architects

cite common sources like Schön and Cross in their research design. The

connection has been further bolstered in recent years by software engineers

adopting lean development methods that “sound much like design”

(Woodbury 2010, 66), and by attempts to position software engineering

(and its associated research) within the field of design (Brooks 2010).

While software engineers have shown a willingness to learn from design

research, this has largely been an asymmetric exchange. My research has

gone against the prevailing by drawing upon software engineering research

methods and methodologies to structure research about architecture.

While the case studies have shown the potential of this exchange, there

remains considerable scope to establish further connections between

shared methods of research in software engineering and architecture.

199

8.3	 Shared Practices

The challenges that change presents for both software engineers and

architects have pushed both to improve their practices. The progress of

one has been largely unbeknownst to the other, which is perhaps most

evocatively illustrated in the parallel curves drawn simultaneously by

architect Boyd Paulson (1976) and software engineer Barry Boehm

(1976) (see chap. 2.2 & 3.1). Both demonstrate, neither aware of the

other, that changes become exponentially more expensive as a project

progresses. This cost has seen both architects and software engineers

attempt to avoid making changes by employing a practice known as front-

loading. In the decades since Paulson first drew his curve, architects have

regularly rehashed the curve and its conclusions to justify the practice of

front-loading (Patrick MacLeamy is almost always misattributed as the

originator, see chap. 2.2). At the same time, in the decades since Boehm

first drew his curve, the practice of software engineering has improved to

the point where some commentators have suggested cost now approaches

a horizontal rather than vertical asymptote. This is a practice that lets

software engineers “embrace change” (Beck 1999) rather than avoiding

change with front-loading.

The Software Engineering Body of Knowledge Version 1.0 (SWEBOK.1999)

(Hilburn et al. 1999) attempts to catalogue the knowledge of a software

engineer after three years of practice. In my thesis I have hypothesised that

aspects of this body of knowledge are applicable not only to the practice of

software engineering but also the to the practice of parametric modelling

(see chap. 3.2). In my three case studies I have considered how three

aspects of the SWEBOK.1999 – programming paradigms, programming

structure, and programming environments – affect the practice of

parametric modelling:

•	 In Case Study A (chapter 5) I considered how programming paradigms

impacted the creation of parametric models for the Sagrada Família.

I developed a new method of parametric modelling using logic

programming and found this to influence the parametric model’s

construction time, modification time, latency, and extendability. This

case study suggests a model’s programming paradigm is a key control

point in tuning the model’s flexibility.

200

•	 In Case Study B (chapter 6) I experimented with changing the structure

of Dermoid’s parametric models. Despite structure being a fundamental

part of software engineering, the overwhelming majority of the 2002

parametric models I surveyed had no structure. The restructuring of

Dermoid’s models demonstrated that model structure, rather than

model size or cyclomatic complexity, is likely the greatest determinant

of model understandability. This has implications for model reuse and

project continuity, with structure helping support changes late in the

Dermoid project.

•	 In Case Study C (chapter 7) I applied innovations from software

engineering Integrated Development Environments (IDEs) to

create a novel interactive programming environment specifically

for the challenges of modelling geometry. Across a series of projects

this environment reduced the latency of writing code, which has

implications for the change blindness (see chap. 2.3) designers

sometimes experience when making changes. This case study suggests

that the environments architects use to write programs can themselves

be sites of innovation.

These case studies each individually contribute a novel method of

parametric modelling to the field of architectural design (each has been

previously published: Davis et al. 2012; Davis et al. 2011a; Davis et al.

2011b; Davis et al. 2011c). I have been able to prototype these new

approaches by building upon numerous developments belonging to what

the SWEBOK.1999 classifies as Computing Fundamentals; developments

in programming languages, geometric APIs, operating systems, and

computer hardware. Even ten years ago there was so little to build

upon that creating any sort of parametric modelling environment (like

GenerativeComponents) was considered a major achievement. If this trend

continues – and at the moment there is no reason to suspect it will not –

over time it should become even easier to test and apply new modelling

approaches. For example, I rewrote Yeti (the interactive programming

environment from chapter 7) to run upon the newly developed pythonOCC

and Django frameworks, with HTML5 WebGL as the rendering engine

(which was only a few months old at the time). This rewritten version

of Yeti runs on any web browser (fig. 78) and suggests a future where

developments in Computing Fundamentals empower individuals to rapidly

invent novel modelling methods for the peculiarities of a project.

201

Collectively the three case studies indicate that the software engineering

body of knowledge is a fertile ground for improving the practice of

parametric modelling. Software engineers have, according to Young

and Faulk (2010, 439), spent significant time considering “the essential

challenges of complexity and the cost of design” since this is the “primary

leverage point” in a discipline where “the costs of materials and fabrication

are nil.” The case studies demonstrate that the work software engineers

have put into addressing these challenges – challenges partly shared by

architects – are often applicable to the practice of parametric modelling.

Yet, the case studies only begin to explore the application of this knowledge.

Even my work on structuring parametric models (chap. 6) only touches

the surface of an extremely rich area of software engineering. Likewise,

my research into language paradigms and programming environments

presents only one instance of many potential possibilities. Other

promising sites for future research (identified in chapter 3.2) include the

design, coding, and testing stages of Software Product Engineering as well

as Software Management (which is an area of knowledge with many obvious

connections to architecture, but one that I have not directly explored in

my research).

The software engineering body of knowledge is not the silver bullet to the

challenges architects face when working with parametric models. It bears

remembering that less than half of all software projects in 2012 were

successful (The Standish Group 2012; The Standish Group 2009; Eveleens

and Verhoef 2010). What the body of knowledge offers is a precedent for

thinking about the practice of parametric modelling. In the case studies

these all involved tradeoffs, for example, logic programming (chap. 5)

facilitated the un-baking of explicit geometry but also negatively impacted

the model’s modification time and ease of use (for a detailed reflection

on these tradeoffs see the discussions in chapters 5, 6, & 7). Yet within

these tradeoffs are options: options to manipulate the flexibility of the

parametric model in ways that did not exist before. Potentially the software

engineering body of knowledge and the connections my research reveals

between shared challenges, shared research methods, and shared design

practices offers a precedent for partly controlling a parametric model’s

flexibly – an act that would have significant implications for the practice

of architecture.

Figure 78: The WebGL
version of Yeti runs on
any computer with a
web browser and does
not require the user to
install any proprietary
software like Rhino.
Top: Yeti running inside
the Chrome browser
on a desktop computer.
Middle and Bottom:
Yeti running inside the
Safari browser on an
iPad (images taken in
December 2011).

203

8.4	 Implications

For Education

The Software Engineering Body of Knowledge Version 1.0 (Hilburn et al.

1999, 20) not only represents what practicing software engineers know,

it also represents what software engineers are taught (see chap. 3.2). If the

challenges architects and software engineers face are similar, and if the

software engineering body of knowledge suggests practices to alleviate

these challenges, the question arises: should architects be taught about

software engineering when they learn about parametric modelling?

The teaching of parametric modelling has typically been devoid of reference

to the practice of software engineering, which is unsurprising given the lack

of connection between parametric modelling and software engineering at

other levels. Robert Aish (2005, 12) says he aims to get designers to think

algorithmically “without demanding that designers become programmers.”

Aish (2005, 12) goes on to suggest that designers would benefit from what

is almost the antithesis of software engineering: a reduction in the “logical

formalism” of parametric models. This ambition comes through in the

parametric modelling environments Aish has developed while working at

Bentley and Autodesk. When architects learn to use these environments,

they are ordinarily taught the “keystroke-by-keystroke instructions to

achieve specific tasks” says Robert Woodbury (2010, 8). Consequently,

the typical parametric modelling pedagogy follows the practices of teaching

non-parametric CAD software much more than it follows the practices of

teaching programming and software engineering (see chap. 6.3). Woodbury

(2010, 9) argues that the cause (although perhaps it is a consequence)

comes from designers being “amateur programmers” and naturally wanting

to “leave abstraction, generality and reuse mostly for ‘real programmers’.”

My research suggests that there may be a danger to teaching parametric

modelling without the accompanying background of software engineering.

With parametric modelling often simplified to keystroke-by-keystroke

sequences, it is perhaps unsurprising that even simple software engineering

204

practices, like naming parameters, are not undertaken in 81% of the 2002

models I examined (see chap. 6.3). Regardless of the cause, the consequence

is that these unstructured models are demonstrably incomprehensible

to other designers. This may be an acceptable situation if designers are,

like Woodbury (2010, 9) characterises them, just quickly creating one-off

parametric models “for the task at hand.” Yet the reported challenges of

making changes to parametric models indicates that many designers are

generating and retaining models for more than the immediate task at

hand. Designers are developing parametric models that evolve throughout

the duration of the project, and designers are frequently using their models

to address more than an individual task, often capturing the entire logic

of a project within a single parametric model (see chap. 2.3). Each of

the case studies in this thesis demonstrates how knowledge of software

engineering can help architects through these challenging circumstances.

Designers seem ill served by an education that seemingly avoids discussion

of these challenges in favour of keystroke-by-keystroke instructions that

mimic post-rationally glorified parametric projects. The potential danger

in sheltering designers from this knowledge is that rather than making

parametric modelling easier, it actually become harder in practice.

How parametric modelling should be taught remains an open question

and one deserving of further attention. My research tentatively indicates

that designers require some understanding of software engineering to get

past the point of making tools that solve isolated tasks. As such, there

might be a more nuanced spectrum to the binary Woodbury constructs

between amateur and real programmer. Identifying the best way to

progress designers along this spectrum is outside the scope of my research,

however, I will speculate that the way software engineers are taught may

offer another connection to guide the future instruction of designers.

205

For Practice

Another open question implicated in this research concerns how parametric

modelling will impact the practice of architecture. As the practice of software

engineering has improved, and as programmers have flattened Boehm’s

curve into Beck’s curve (see chap. 3.1), the process of software engineering

has radically changed. Boehm’s curve suggested a practice whereby change

is avoided through front-loading. Programmers are organised in a rigid

hierarchy to push a project through an uncompromising linear sequence

of requirements, design, construction, and maintenance (see chap. 3.1).

Beck’s curve suggests an alternative practice whereby iterations and

continual feedback allow developers to “embrace change” (Beck 1999)

even late in the project (Brooks 2010). Small teams of programmers

self-organise to spiral through stages of planning, acting, and reflecting.

The Standish Group’s industry survey suggests that these agile processes

offer “three times the success rate of the traditional waterfall method [a

synonym for front-loading] and a much lower percentage of time and cost

overruns” (The Standish Group 2012, 25).

The Dermoid case study from chapter 6 signals how similar manipulations

of Paulson and MacLeamy’s curve (fig. 79) may impact architectural

practice. The Dermoid design process began by exploring both material

properties and beam propagation strategies, an exploration that would

typically fall into the design development stage of an orthodox design

process. The design iterated for over a year, cycling through full-scale

prototypes, conceptual parametric models, structural analysis, and design

detailing. One of the last decisions to be finalised by the team was the

shape of Dermoid, which would ordinarily be a pivotal decision made

early in the process (possibly on a napkin). By using parametric models

to delay this decision, the design team was able to determine Dermoid’s

shape at a point where they best understood how the shape would impact

the structure, the site, the budget, the construction schedule, and the

experience of inhabiting Dermoid. This is essentially the reverse of Paulson

and MacLeamy’s front-loading: rather than making decisions early in order

to avoid the expense of changing them later, in Dermoid the cost of change

was lowered to the point where critical decisions could be delayed until

they were best understood. Robert Woodbury has hypothesised about such

Predesign Schematic
Design

Design
Development

Documents Tendering Construction

IPD Effort

Cost of design changes100%

0%

C
os

t &
 A

bi
lit

y
to

 c
ha

ng
e

Typical Effort

Ability to impact cost

Project Time

Cost of design changes100%

0%

C
os

t &
 A

bi
lit

y
to

 c
ha

ng
e

Typical Effort

Ability to impact cost

Construction

Project Time

Iterative Parametric Prototyping

Figure 79: Paulson and MacLeamy’s curve (see chap. 2.2). The typical design effort is
transferred to an earlier stage of the project – a point where the cost of change is low.

207

changes to the design process, but provides no examples of this occurring

in practice:

Parametric modelling introduces a new strategy: deferral… Changing

the order in which modelling and design decisions can be made is

both a major feature of and deliberate strategy for parametric design.

Indeed, a principal financial argument for parametric modelling is its

touted ability to support rapid change late in the design process.

Woodbury 2010, 43

The parametric models used in the Sagrada Família’s frontons, in Dermoid,

and in the FabPod all demonstrate how parametric models can accommodate

late-stage changes. These changes to the fronton’s angle, to Dermoid’s

shape, and to the FabPod’s layout would ordinarily be prohibitively time

consuming, but the flexibility of the respective parametric models helped

lower the cost of change to the point where the changes were welcomed

late in the design process. In contemplating how flexibility may impact the

practice of software engineering, Kent Beck asked:

What would we do if all that investment paid off? What if all that work

[improving flexibility] and whatnot actually got somewhere? What if

the cost of change didn’t rise exponentially over time, but rose much

more slowly, eventually reaching an asymptote? What if tomorrow’s

software engineering professor draws [figure 13] on the board?

Beck 1999, 27

The same questions can be asked of architects. If software engineering

techniques enable more flexible parametric models, then perhaps

tomorrow’s architecture professors will not be drawing Paulson or

MacLeamy’s curve (fig. 79) on the board but rather a curve that resembles

figure 80. My research suggests that the consequence of flattening the

cost of change extends beyond financial savings and beyond the ability

to make late changes. The real consequence may be a more iterative and

malleable design practice; a practice where the positioning of design effort

is not dictated by the cost of change but rather by the requirements of

the project.

Predesign Schematic
Design

Design
Development

Documents Tendering Construction

IPD Effort

Cost of design changes100%

0%

C
os

t &
 A

bi
lit

y
to

 c
ha

ng
e

Typical Effort

Ability to impact cost

Project Time

Cost of design changes100%

0%

C
os

t &
 A

bi
lit

y
to

 c
ha

ng
e

Typical Effort

Ability to impact cost

Construction

Project Time

Iterative Parametric Prototyping

Figure 80: An alternative to Paulson and MacLeamy’s curve (shown above). Rather than
shifting design effort in relation to the cost of change, it may be possible to shift the cost
of change in relation to design effort. My research suggests that parametric models can
potentially lower the cost of design changes, allowing designers to defer key decisions until
later in the project – by which point they are likely to understand the decision’s design
consequences better.

209

Beyond Toolmaking

Edsger Dijkstra, a software engineer I have cited frequently in this thesis,

has said of software engineering’s relationship to toolmaking:

Computers are extremely flexible and powerful tools and many feel

that their application is changing the face of the earth. I would venture

the opinion that as long as we regard them primarily as tools, we might

grossly underestimate their significance. Their influence as tools might

turn out to be but a ripple on the surface of our culture, whereas I

expect them to have a much more profound influence in their capacity

of intellectual challenge.

Dijkstra 1970, 7

Architects have long characterised CAD software as a type of tool; whether

it is John Walker in 1983 trying to make “AutoCAD become synonymous

with ‘drawing tool’” (1983, 1) or whether it is Robert Aish (2011, 23)

more recently saying, “software developers do not design buildings. Their

role is to design the tools that other creative designers, architects and

engineers use to design buildings.” Aish goes on to explain the asymmetric

relationship borne of “tools transmitting advantage from the toolmaker

to the tool user.” This relationship between maker and user is disrupted by

parametric modelling. As Mark Burry (2011, 8) observes, “digital design

is now fully assimilated into design practice, and we are moving rapidly

from an era of being aspiring expert users to one of being adept digital

toolmakers.” He continues, “the tool user (designer) becomes the new

toolmaker (software engineer)” (M. Burry 2011, 9 [brackets are Burry’s]).

This unification of the user and the maker calls into question the distinction

between user and maker that has been inherited from other CAD software.

To borrow the words of Edsger Dijkstra (1970, 7), by regarding parametric

models primarily as tools, we might [have] grossly underestimated their

significance.

The distinction between using and making persists in much of the current

discourse regarding parametric models. It persists explicitly in the likes

of Roland Hudson’s (2010) PhD thesis, Strategies for Parametric Design in

Architecture, when he continually refers to “completed parametric models”

almost as if model making cumulates with a definite point of completion

from which tool use and designing can begin (see chap. 2.1). It persists

210

when Robert Woodbury (2010, 9) portrays the parametric model as a

tool for adequately doing design tasks but never being the design task,

saying “the task is foremost, the tool need only be adequate to it” (2010,

9). It persists when Benjamin Aranda and Chris Lasch (2005) write in

their book, Tooling, that “the job of designing begins” (2005, 9) only once

the tool is made. It persists in architectural education, says John Frazer

(2006), because “design computation is still only seen by many as ‘just

a tool’ and remote from the real business of creative design, which can

be mainly blamed on the dull minds of those who were most part left to

teach computing – often as if it were a separate subject.” It persists when

Patrik Schumacher (2009a, 15) defines parametricism in terms of stylistic

outputs coming from “parametric design tools and scripts.” And it persists

when Mark Gage tells architects to “use computation, but stop fucking

talking about it” (2011a, 1) and later instructs them to hire software

engineers “because these tools are so new to architecture” (2011b, 133).

In a less explicit way, the separation between making and use persists in

many contemporary definitions of parametric modelling. When authors

define parametric as being all of design, or only the designs that change,

or design in the style of parametricism, they implicitly focus on what

parametric models do (see chap. 2.1). By focusing on the doing, many of

these definitions overlook the unique features of a parametric model, such

as the presence of explicit relationships linking parameters to outcomes;

features that distinguish parametric models from traditional manual tools

and from other forms of design representation.

“There is something different, unprecedented, and extraordinary about

the computer as it compares to traditional manual tools,” argues Kostas

Terzidis (2006, 24). For Terzidis this difference lies in the inability of

humans to reason about computational processes such as parametric

modelling. He goes on to remark somewhat cattily in an endnote,

“architects such as Neil Denari, Greg Lynn, or Peter Eisenman use the

term tool to describe computational processes yet none of them has any

formal education in computer science” (2006, 34). Indeed, discussions of

computer science and software engineering are almost entirely absent

from discussions around parametric modelling. Architecture students are

generally not taught about software engineering, there is “little explicit

connection” (Woodbury 2010, 66) in the academic literature, and many

prominent parametric modelling commentators (a number of whom do

not themselves use parametric models [M. Burry 2011, 37]) seem more

211

caught up in determining if parametric modelling constitutes a new movement

in architecture than they are in acknowledging the real challenges faced by

architects using parametric models.

My research has revealed three major connections between parametric

modelling and software engineering; connections that link shared challenges,

shared research methods, and shared design practices. It is in the shared

challenges that the analogy of toolmaking begins to unravel. These challenges

are often “overshadowed by the great number of post-rationalised, outcome-

focused reports on digital design toolmaking” (Fischer 2008, 245). Yet, in the

cracks between the post-rationalised veneer, there are fragments of parametric

models that have been shattered by the very thing they were designed to

accommodate: change (see chap. 2.3). These catastrophic failures are not

from designers quickly creating one-off parametric models “for the task at

hand” (Woodbury 2010, 9). Instead, these failures often concern changing the

logic of a model that represents an entire project (see chap. 2.3). To borrow a

toolmaking analogy, these changes essentially involve turning a tee-square into

a french curve while it is being used; a change that is different, unprecedented,

and extraordinary compared to any previous drawing tool. Being able to go

back and modify a parametric model is a far more distinguishing feature than

any outward resemblance to tools in AutoCAD. It is in these modifications that

designers are sometimes coming unstuck, but it is also in these modifications

that parametric modelling derives its utility and software engineering gains

its relevance to the practice of parametric modelling.

This thesis is somewhat unusual in that it chronicles what happens to a range

of parametric models throughout a series of projects. These case studies show

that design is not something an architect does with a ‘completed parametric

model’, but rather something that happens iteratively throughout the

parametric modelling process. They suggest a practice whereby the tool user

and toolmaker are indistinguishable, and therefore capable of tuning the

model’s assorted flexibilities to delay and explore some aspects of the design,

while rebuilding sections of the model to accommodate others. There is a

gap in our knowledge about how this process happens. While other forms of

architectural representation have a rich history of critical enquiry to draw upon,

my research indicates that software engineering may offer a similar foundation

to the practice of parametric modelling. But doing so requires shifting our focus

beyond toolmaking, beyond our infatuation with what parametric models do,

and towards what is, for lack of a better term, parametric modelling.

212

9	 Conclusion

In many ways the conclusion to this thesis is simple:

software engineers creating computer programs and

architects designing with parametric models share

similar challenges, which can often be addressed with

similar research methods and similar design practices.

But this simplicity can be hard to discern. Fifty years

ago when Timothy Johnson dragged a pen across

the flickering screen of Sketchpad, it looked like

he was drawing. Today many would say Johnson

was toolmaking, almost as if making a tee-square is

somehow a precedent for weaving a parametric model

from a network of explicit functions. However, unlike

the tee-square, or any other prior form of design

representation, parametric models merge making and

using to the point of indistinguishability. This presents

unfamiliar challenges to designers; challenges that

have been causing setbacks on numerous architecture

projects. These challenges resemble challenges faced

in software engineering. My research suggests that

such an association offers a proven pathway both for

conducting parametric modelling research and for

improving the practice of parametric modelling with

aspects of the software engineering body of knowledge.

Admittedly there is something counterintuitive to the

notion that programmers can teach architects about

contemporary design representation but, while it can

be hard to discern, in some respects the contemporary

practice of architecture has more in common with

the software engineers of Silicon Valley than the

sketchpads used by previous generations of architects.

214

10	 Bibliography

215

10.1	 Published During Study

First Author Papers

Davis, Daniel, and Brady Peters. 2013. “Design Ecosystems: Customising

the Design Environment with plugins.” Architectural Design

(forthcoming).

Davis, Daniel, Jane Burry, and Mark Burry. 2012. “Yeti: Designing

Geometric Tools with Interactive Programming.” In Meaning,

Matter, Making: Proceedings of the 7th International Workshop

on the Design and Semantics of Form and Movement, edited by

Lin-Lin Chen, Tom Djajadiningrat, Loe Feijs, Simon Fraser,

Steven Kyffin, and Dagmar Steffen, 196–202. Wellington,

New Zealand: Victoria University of Wellington.

———. 2011a. “Untangling Parametric Schemata: Enhancing

Collaboration through Modular Programming.” In Designing

Together: Proceedings of the 14th International Conference on

Computer Aided Architectural Design Futures, edited by Pierre

Leclercq, Ann Heylighen, and Geneviève Martin, 55-68.

Liège: Les Éditions de l’Université de Liège. Selected as the

best paper of CAAD Futures 2011.

———. 2011b. “Understanding Visual Scripts: Improving collaboration

through modular programming.” International Journal of

Architectural Computing 9 (4): 361-376.

———. 2011c. “The Flexibility of Logic Programming.” In Circuit

Bending, Breaking and Mending: Proceedings of the 16th

International Conference on Computer Aided Architectural

Design Research in Asia, edited by Christiane Herr, Ning Gu,

Stanislav Roudavski, and Marc Schnabel, 29–38. Newcastle,

Australia: The University of Newcastle.

Davis, Daniel, Flora Salim, and Burry Jane. 2011. “Designing Responsive

Architecture: Mediating Analogue and Digital Modelling in

Studio.” In Circuit Bending, Breaking and Mending: Proceedings

of the 16th International Conference on Computer Aided

Architectural Design Research in Asia, edited by Christiane

Herr, Ning Gu, Stanislav Roudavski, and Marc Schnabel,

155–164. Newcastle, Australia: The University of Newcastle.

216

Non-first Author Papers

Bohnenberger, Sascha, Chin Koi Khoo, Daniel Davis, Mette Ramsgard

Thomsen, Ayelet Karmon, and Mark Burry. 2012. “Sensing

Material Systems – Novel Design Strategies.” International

Journal of Architectural Computing 10 (3): 361–376.

Burry, Jane, Mark Burry, Martin Tamke, Mette Thomsen, Phil Ayres,

Alexander Peña de Leon, Daniel Davis, Anders Deleuran,

Stig Nielsen, Jacob Riiber. 2012. “Process through practice:

synthesizing a novel design and production ecology through

Dermoid.” In Synthetic Digital Ecologies: Proceedings of the

32nd Annual Conference of the Association for Computer Aided

Design in Architecture, edited by Mark Cabrinha, Jason

Johnson, and Kyle Steinfeld, 127–138. San Francisco:

California College of the Arts.

Burry, Jane, Daniel Davis, Brady Peters, Phil Ayres, John Klein,

Alexander Peña de Leon, and Mark Burry. 2011. “Modelling

Hyperboloid Sound Scattering: The challenge of simulating,

fabricating and measuring.” In Computational Design

Modeling: Proceedings of the Design Modeling Symposium Berlin

2011, edited by Christoph Gengnagel, Axel Kilian, Norbert

Palz, and Fabian Scheurer, 89-96. Berlin: Springer-Verlag.

Selected Blogposts (Cited in Thesis)

Davis, Daniel. 2011a. “The MacLeamy Curve.” Digital Morphogenesis.

Published 15 October. http://www.nzarchitecture.com/blog/

index.php/2011/10/15/macleamy/.

———. 2011b. “Datamining Grasshopper.” Digital Morphogenesis.

Published 20 September. http://www.nzarchitecture.com/

blog/index.php/2011/09/20/datamining-grasshopper/.

———. 2010. “Patrik Schumacher – Parametricism.” Digital

Morphogenesis. Published 25 September. http://www.

nzarchitecture.com/blog/index.php/2010/09/25/

patrik-schumacher-parametricism/.

217

10.2	 Works Cited

ACM (Association for Computing Machinery). 2000. “A Summary of

the ACM Position on Software Engineering as a Licensed

Engineering Profession.” Unpublished report, 17 July.

AIA (The American Institute of Architects). 2007. “Integrated Project

Delivery : A Guide.” Accessed 21 November 2012. http://

info.aia.org/SiteObjects/files/IPD_Guide_2007.pdf.

Aberdeen Group. 2007. “The Design Reuse Benchmark Report: Seizing

the Opportunity to Shorten Product Development.”

February. Boston: Aberdeen Group.

Abran, Alain, and James Moore, eds. 2004. Guide to the Software

Engineering Body of Knowledge: Version 2004. Los Alamitos:

Institute of Electrical and Electronic Engineers Computer

Society.

Aish, Robert. 2005. “From Intuition to Precision.” In 23rd eCAADe

Conference Proceedings, 62–63. Lisbon: Technical University

of Lisbon.

———. 2011. “Designing at t + n.” Architectural Design 81 (6): 20–27.

Aish, Robert, Benjamin Barnes, Mehdi Sheikholeslami, and Ben Doherty.

2012. “Multi-modal Manipulation of a Geometric Model.”

US Patent application 13/306,730, filed 29 November 2011,

and published 12 July 2012.

Aish, Robert, and Robert Woodbury. 2005. “Multi-level Interaction in

Parametric Design.” In Smart Graphics: 5th International

Symposium, edited by Andreas Butz, Brian Fisher, Antonio

Krüger, and Patrick Olivier, 151–162. Frauenwörth Cloister:

Springer.

Appleby, Doris, and Julius VandeKopple. 1997. Programming Languages:

Paradigm and Practice. Second edition. Massachusetts:

McGraw-Hill.

Aranda, Benjamin, and Chris Lasch. 2005. Tooling: Pamphlet Architecture

27. New York: Princeton Architectural Press.

Asanowicz, Alexander. 1989. “Four Easy Questions.” In Education

Research and Practice: 8th eCAADe Conference Proceedings,

edited by K. Agger and U. Lentz. Aarhus: School of

Architecture Aarhus.

218

Bagert, Donald, Thomas Hilburn, Greg Hislop, Michael Lutz, and

Michael Mccracken. 1999. Guidelines for Software Engineering

Education Version 1.0. Pittsburgh: Carnegie Mellon

University.

Barrie, Donald, and Boyd Paulson. 1991. Professional Construction

Management: Including C.M., Design-construct, and General

Contracting. Third edition. Hightstown: McGraw Hill.

Beck, Kent. 1999. Extreme Programming Explained: Embrace Change.

Boston: Addison-Wesley.

Beck, Kent, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward

Cunningham, Martin Fowler, James Grenning, et al. 2001a.

“Manifesto for Agile Software Development.” Published

February. http://agilemanifesto.org/.

———. 2001b. “Principles behind the Agile Manifesto.” Published

February. http://agilemanifesto.org/principles.html.

Bentley Systems. 2008. GenerativeComponents V8i Essentials. Exton, PA:

Bentley Systems.

Boehm, Barry. 1976. “Software Engineering.” IEEE Transactions on

Computers 25 (12): 1226-1241.

———. 1981. Software Engineering Economics. Upper Saddle River:

Prentice Hall.

———. 1988. “A Spiral Model of Software Development and

Enhancement.” Computer 21 (5): 61-72.

Böhm, Corrado, and Giuseppe Jacopini. 1966. “Flow Diagrams, Turing

Machines And Languages With Only Two Formation Rules.”

Communications of the Association for Computing Machinery 9

(5): 366-371.

Brooks, Frederick. 1975. The Mythical Man-month : Essays on Software

Engineering. Anniversary edition. Boston: Addison-Wesley.

———. 2010. The Design of Design: Essays from a Computer Scientist.

Upper Saddle River: Addison-Wesley.

Brown, Tim. 2009. Change by Design: How Design Thinking Transforms

Organizations and Inspires Innovation. New York:

HarperCollins.

Brüderlin, Beat. 1985. “Using Prolog for Constructing Geometric Objects

Defined by Constraints.” In Proceedings of the European

Conference on Computer Algebra, edited by Bob Caviness,

448-459. Linz: Springer.

219

Bucci, Federico, and Marco Mulazzani. 2000. Luigi Moretti: Works and

Writings. New York: Princeton Architectural Press.

Burry, Jane. 2007. “Mindful Spaces: Computational Geometry and

the Conceptual Spaces in which Designers Operate.”

International Journal of Architectural Computing 5 (4):

611-624.

Burry, Jane, and Mark Burry. 2006. “Sharing Hidden Power:

Communicating Latency in Digital Models.” In

Communicating Space(s): 24th eCAADe Conference Proceedings.

Volos: University of Thessaly.

Burry, Mark. 1996. “Parametric Design and the Sagrada Família.”

Architectural Research Quarterly, no. 1 : 70-80.

———. 2011. Scripting Cultures. Chichester: Wiley.

Card, Stuart, George Robertson, and Jock Mackinlay. 1991. “The

Information Visualizer, an Information Workspace.” In

Reaching Through Technology: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, 181–188.

New Orleans: Association for Computing Machinery.

Celani, Gabriela, and Carlos Vaz. 2012. “CAD Scripting And Visual

Programming Languages For Implementing Computational

Design Concepts: A Comparison From A Pedagogical Point

Of View.” International Journal of Architectural Computing 10

(1): 121–138.

Christensen, Henrik. 2010. Flexible, Reliable Software: Using Patterns and

Agile Development. Boca Raton: Chapman & Hall/CRC.

CiteSeer. 2012. “Most Cited Computer Science Articles.” Published 20

May. http://citeseerx.ist.psu.edu/stats/articles.

Converso, Stefano, and Fabrizio Bonatti. 2006. “Parametric Model for

Architectural Design.” In Game Set and Match: On Computer

Games, Advanced Geometries, and Digital Technologies, edited

by Kas Oosterhuis and Lukas Feireiss, 242–247. Rotterdam:

Episode Publishers.

Creative Commons. 2007. “Attribution-ShareAlike 3.0 Unported

License Deed.” Accessed 19 November 2012. http://

creativecommons.org/licenses/by-sa/3.0/.

Creswell, John, and Vicki Clark. 2007. Designing and Conducting: Mixed

Methods Research. Thousand Oaks: Sage.

220

Cross, Nigel. 2006. Designerly Ways of Knowing. London: Springer-Verlag.

———. 2011. Design Thinking: Understanding How Designers Think and

Work. Oxford: Berg.

Dana, James. 1837. “On the Drawing of Figures of Crystals.” The

American Journal of Science and Arts 32: 30-50.

DeMarco, Tom. 1982. Controlling Software Projects: Management,

Measurement, and Estimates. New York: Yourdon Press.

———. 2009. “Software Engineering: An Idea Whose Time has Come

and Gone.” IEEE Software 26 (4): 95-96.

Dijkstra, Edsger. 1968. “Go To Statement Considered Harmful.”

Communications of the Association for Computing Machinery

11 (3): 147–148.

———. 1970. Notes on Structured Programming. Second Edition.

Eindhoven: Technological University of Eindhoven.

———. 1972. “The Humble Programmer.” Communications of the

Association for Computing Machinery 15 (10): 859-866.

———. 1985. “Foreword.” In Communicating Sequential Processes, by

Charles Hoare, iii. Upper Saddle River: Prentice Hall.

———. 1997. “The Tide, Not the Waves.” In Beyond Calculation: The Next

Fifty Years of Computing, edited by Peter Denning and Robert

Metcalfe, 59–64. New York: Springer.

Dino, Ipek. 2012. “Creative Design Exploration by Parametric Generative

Systems in Architecture.” METU Journal of Faculty of

Architecture 29 (1): 207–224.

Dorfman, Merlin, and Richard Thayer. 1996. “Issues: The Software

Crisis.” In Software Engineering, edited by Merlin Dorfman,

and Richard Thayer, 1–3. Los Alamitos: IEEE Computer

Society Press.

Détienne, Françoise. 2001. Software Design: Cognitive Aspects. Translated

and edited by Frank Bott. London: Springer.

Díaz-Herrera, Jorge, and Thomas Hilburn, eds. 2004. Software

Engineering 2004: Curriculum Guidelines for Undergraduate

Degree Programs in Software Engineering. Engineering. Los

Alamitos: Institute of Electrical and Electronic Engineers

Computer Society.

Earnshaw, Samuel. 1839. “On the Nature of the Molecular Forces which

Regulate the Constitution of the Luminiferous Ether.”

Transactions of the Cambridge Philosophical Society 7: 97-112.

221

Eastman, Chuck, Paul Teicholz, Rafael Sacks, and Kathleen Liston. 2011.

BIM Handbook: A Guide to Building Information Modeling for

Owners, Managers, Designers, Engineers, and Contractors.

Second edition. Upper Saddle River: Wiley.

El Emam, Khaled, Saïda Benlarbi, Nishith Goel, and Shesh Rai. 2001.

“The Confounding Effect of Class Size on the Validity of

Object-Oriented Metrics.” IEEE Transactions on Software

Engineering 27 (7): 630-650.

Erhan, Halil, Robert Woodbury, and Nahal Salmasi. 2009. “Visual

Sensitivity Analysis of Parametric Design Models: Improving

Agility in Design.” In Joining Languages, Cultures and Visions:

Proceedings of the 13th International Conference on Computer

Aided Architectural Design Futures, edited by Temy Tidafi

and Tomás Dorta, 815–829. Montreal: Les Presses de

l'Université de Montréal.

Evans, Clark. 2011. “The Official YAML Web Site.” Last modified 20

November. http://www.yaml.org/.

Evans, David, and Paul Gruba. 2002. How to Write a Better Thesis. Second

edition. Melbourne: Melbourne University Press.

Eveleens, Laurenz, and Chris Verhoef. 2010. “The Rise and Fall of the

Chaos Report Figures.” IEEE Software 27 (1): 30-36.

Fischer, Thomas. 2008. “Designing (tools (for designing (tools for …)))).”

PhD dissertation, Royal Melbourne Institute of Technology.

Frazer, John. 2006. “The Generation of Virtual Prototypes for

Performance Optimization.” In Game Set and Match:

On Computer Games, Advanced Geometries, and Digital

Technologies, edited by Kas Oosterhuis and Lukas Feireiss.

Rotterdam: Episode Publishers.

Fudos, Ioannis. 1995. “Constraint Solving for Computer Aided Design.”

PhD dissertation, Purdue University.

Gage, Mark. 2011a. “Project Mayhem.” Fulcrum, 8 June.

———. 2011b. “Software Monocultures.” In Composites, Surfaces, and

Software: High Performance Architecture, edited by Greg

Lynn and Mark Gage, 107–120. New Haven: Yale School of

Architecture.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995.

Design Patterns. Boston: Addison-Wesley.

222

Gerber, David. 2007. “Parametric Practices: Models for Design

Exploration in Architecture.” PhD dissertation, Harvard

University.

Glegg, Gordon. 1969. The Design of Design. Cambridge: Cambridge

University Press.

Gonzalez, Camacho, M. Williams, and E. Aitchison. 1984. “Evaluation

of the Effectiveness of Prolog for a CAD Application.” IEEE

Computer Graphics and Applications 4 (3): 67-75.

Green, Thomas, and Marian Petre. 1996. “Usability Analysis of Visual

Programming Environments: A ‘Cognitive Dimensions’

Framework.” Journal of Visual Languages & Computing 7

(2): 131-174.

HOK. 2012. “HOK History + Lore.” Accessed 21 November 2012. http://

www.hok.com/lore/.

Hatherley, Owen. 2010. “Zaha Hadid Architects and the Neoliberal

Avant-Garde.” MUTE. First published 26 October. http://

www.metamute.org/editorial/articles/zaha-hadid-architects-

and-neoliberal-avant-garde. Subsequently published in 2011,

MUTE 3 (1): 39-53. This print edition does not contain the

paragraph cited. Hatherley was unaware of this change

(per. comm. 15 August 2011). The online edition was later

updated to match the print edition, although the paragraph

remains in translations of the article, such as: 2011. “Zaha

Hadid y la Vanguadia Neoliberal.” Tintank. Published 15

January. http://www.tintank.es/?p=736

Helm, Richard, and Kim Marriott. 1986. “Declarative Graphics.” In

Proceedings of the Third International Conference on Logic

Programming, 513-527. London: Springer.

Henderson-Sellers, Brian, and David Tegarden. 1994. “The Theoretical

Extension of Two Versions of Cyclomatic Complexity to

Multiple Entry/exit Modules.” Software Quality Journal 3 (4):

253–269.

Hewitt, Carl. 2009. “Middle History of Logic Programming: Resolution,

Planner, Edinburgh LCF, Prolog, Simula, and the Japanese

Fifth Generation Project.” arXiv preprint arXiv:0904.3036.

Hilburn, Thomas, Iraj Hirmanpour, Soheil Khajenoori, Richard Turner,

and Abir Qasem. 1999. A Software Engineering Body

of Knowledge Version 1.0. Pittsburgh: Carnegie Mellon

University.

223

Holzer, Dominik, Richard Hough, and Mark Burry. 2007. “Parametric

Design and Structural Optimisation for Early Design

Exploration.” International Journal of Architectural Computing

5 (4): 625-644.

Hudson, Roland. 2010. “Strategies for Parametric Design in Architecture:

An Application of Practice Led Research.” PhD dissertation,

University of Bath.

ISO (International Organisation for Standards). 2000. Information

Technology: Software product quality – Part 1: Quality model.

ISO/IEC 9126. New York: American National Standards

Institute.

Janssen, Patrick, and Kian Chen. 2011. “Visual Dataflow Modeling :

A Comparison of Three Systems.” In Designing Together:

Proceedings of the 14th International Conference on Computer

Aided Architectural Design Futures, edited by Pierre Leclercq,

Ann Heylighen, and Geneviève Martin, 801–816. Liège: Les

Éditions de l’Université de Liège.

Jenett, Florian. 2012. “Simplelivecoding Source.” Github. Last modified

13 November. https://github.com/fjenett/simplelivecoding.

Keller, Sean. 2006. “Fenland Tech: Architectural Science in Postwar

Cambridge.” Grey Room 23 (April): 40-65.

Kemmis, Stephen, and Robin McTaggart. 1982. The Action Research

Planner. Geelong: Deakin University.

Khabazi, Zubin. 2010. “Generative Algorithms using Grasshopper.”

Morphogenesism. Accessed 19 November. http://www.

morphogenesism.com/generative-algorithms.html.

Kilian, Axel. 2006. “Design Exploration through Bidirectional Modeling

of Constraints.” PhD dissertation, Massachusetts Institute

of Technology.

Kilpatrick, James. 1984. The Writer’s Art. Kansas City: Andrews, McMeel,

and Parker.

Knuth, Donald. 1968. Art of Computer Programming. Upper Saddle River:

Addison-Wesley.

Ko, Andrew. 2010. “Understanding Software Engineering Through

Qualitative Methods.” In Making Software: What Really

Works, and Why We Believe It, edited Andy Oram and Greg

Wilson, 55–64. Sebastopol: O’Reilly.

224

Kolarić, Siniša, Halil Erhan, Robert Woodbury, and Bernhard Riecke.

2010. “Comprehending Parametric CAD Models: An

Evaluation of Two Graphical User Interfaces.” In Extending

Boundaries: Proceedings of the 6th Nordic Conference on

Human-Computer Interaction, edited by Ann Blandford, Jan

Gulliksen, Ebba Hvannberg, Marta Larusdottir, Effie Law,

and Hannes Vilhjalmsson, 707–710. New York: Association

for Computing Machinery.

Kowalski, Robert. 1988. “The Early Years of Logic Programming.”

Communications of the Association for Computing Machinery

31 (1): 38-43.

Lally, Adam, and Paul Fodor. 2011. “Natural Language Processing With

Prolog in the IBM Watson System.” The Association for

Logic Programming (ALP) Newsletter. Published 31 March.

http://www.cs.nmsu.edu/ALP/2011/03/natural-language-

processing-with-prolog-in-the-ibm-watson-system/.

Lawson, Bryan. 2005. How Designers Think: The Design Process

Demystified. Fourth edition. Oxford: Elsevier. First published

1980.

Leach, Neil, and Patrik Schumacher. 2012. “On Parametricism: A

Dialogue Between Neil Leach and Patrik Schumacher.”

Accessed 16 November 2012. http://www.patrikschumacher.

com/Texts/On%20Parametricism%20-%20A%20

Dialogue%20between%20Neil%20Leach%20and%20

Patrik%20Schumacher.html. Originally published in Time +

Architecture no. 2012/5: 1–8.

Leitão, António, Luís Santos, and José Lopes. 2012. “Programming

Languages for Generative Design: A Comparative Study.”

International Journal of Architectural Computing 10 (1):

139–162.

Leslie, John. 1821. Geometrical Analysis and Geometry of Curve Lines.

Second edition. Edinburgh: W. & C. Tait.

Lewis, Clayton, and John Rieman. 1993. “Task-Centered User Interface

Design: A Practical Introduction.” Accessed 19 November

2012. http://hcibib.org/tcuid/tcuid.pdf.

Lincke, Rudiger, and Welf Lowe. 2007. Compendium of Software Quality

Standards and Metrics. Version 1.0. Published 3 April. http://

www.arisa.se/compendium/.

225

Lincoln Laboratory. 1964. Computer Sketchpad. Digitised copy of original.

Youtube video, posted by “bigkif,” 17 November 2007,

https://www.youtube.com/watch?v=USyoT_Ha_bA.

Livingston, Mike. 2002. “Watergate: The name that branded more than a

building.” Washington Business Journal, 17 June.

Loukissas, Yanni. 2009. “Keepers of the Geometry.” In Simulation

and Its Discontents, edited by Sherry Turkle, 153–70.

Massachusetts: MIT Press.

MacLeamy, Patrick. 2010. “Bim-Bam-Boom! How to Build Greener, High-

performance Buildings.” HOK Renew. Accessed 21 November

2012. http://hokrenew.com/2010/02/09/bim-bam-boom-

how-to-guarantee-greener-high-performance-buildings/.

Makris, Dimitrios, Ioannis Havoutis, Georges Miaoulis, and Dimitri

Plemenos. 2006. “MultiCAD: MOGA A System for

Conceptual Style Design of Buildings.” In Proceedings of the

9th 3IA International Conference on Computer Graphics and

Artificial Intelligence, edited by Dimitri Plemenos, 73-84.

Martin, Philippe, and Dominique Martin. 1999. “PolyFormes: Software

for the Declarative Modelling of Polyhedra.” The Visual

Computer 15 (2): 55-76.

McCabe, Thomas. 1976. “A Complexity Measure.” IEEE Transactions on

Software Engineering 2 (4): 308-320.

McCartney, James. 2002. “Rethinking the Computer Music Language:

Super Collider.” Computer Music Journal 26 (4): 61–68.

McConnell, Steven. 2006. Software Estimation: Demystifying the Black Art.

Redmond: Microsoft Press.

Menzies, Tim, and Forrest Shull. 2010. “The Quest for Convincing

Evidence.” In Making Software: What Really Works, and Why

We Believe It, edited Andy Oram and Greg Wilson, 3-11.

Sebastopol: O’Reilly.

Meyer, Bertrand. 1997. Object-Oriented Software Construction. Second

edition. Upper Saddle River: Prentice Hall.

Microsoft. 2005. “Testing Methodologies.” Microsoft Developers Network.

Published January. http://msdn.microsoft.com/en-us/

library/ff649520.aspx.

Miller, Robert. 1968. “Response Time in Man-Computer Conversational

Transactions.” In Proceedings of the AFIPS Fall Joint Computer

Conference, 267–277. Washington, DC: Thompson.

226

Mitchell, William. 1990. The Logic of Architecture: Design, Computation,

and Cognition. Massachusetts: MIT Press.

Monedero, Javier. 1997. “Parametric Design. A Review and Some

Experiences.” In Challenges of the Future: 15th eCAADe

Conference Proceedings, edited by Bob Martens, Helena

Linzer, and Andreas Voigt. Vienna: Österreichischer

Kunstund Kulturverlag.

Moretti, Luigi. 1957. “Forma Come Structtura.” Spazio June-July.

Republished in: Federico Bucci and Marco Mulazzani. 2000.

Luigi Moretti: Works and Writings. New York: Princeton

Architectural Press. Citations refer to the 2000 publication.

———. 1971. “Ricerca Matematica in Architettura e Urbanisticâ.”

Moebius IV no. 1, 30-53. Republished in: Federico Bucci and

Marco Mulazzani. 2000. Luigi Moretti: Works and Writings.

New York: Princeton Architectural Press. Citations refer to

the 2000 publication.

Márkusz, Zsuzsanna. 1982. “Design in Logic.” Computer-Aided Design 14

(6): 335-343.

Nasirova, Diliara, Halil Erhan, Andy Huang, Robert Woodbury,

and Bernhard Riecke. 2011. “Change Detection in 3D

Parametric Systems: Human-Centered Interfaces for Change

Visualization.” In Designing Together: Proceedings of the 14th

International Conference on Computer Aided Architectural

Design Futures, edited by Pierre Leclercq, Ann Heylighen,

and Geneviève Martin, 751–764. Liège: Les Éditions de

l’Université de Liège.

Naur, Peter, and Brian Randell, eds. 1968. Software Engineering: Report

on a Conference Sponsored by the NATO Science Committee.

Garmisch: Scientific Affairs Division, NATO.

Nielsen, Jakob. 1993. Usability Engineering. San Diego: Morgan

Kaufmann.

———. 1994. “Guerrilla HCI: Using Discount Usability Engineering

to Penetrate the Intimidation Barrier.” In Cost-justifying

Usability, edited by Randolph Bias and Deborah Meyhew:

245-272. San Diego: Morgan Kaufmann.

Otto, Frei, and Bodo Rasch. 1996. Finding Form: Towards an Architecture

of the Minimal. Stuttgart: Axel Menges.

227

PTC (Parametric Technology Corporation). 2008. “Explicit Modeling:

What To Do When Your 3D CAD Productivity Isn’t What

You Expected.” White-paper. Needham: Parametric

Technology Corporation.

Parnas, David. 1972. “On the Criteria To Be Used in Decomposing

Systems into Modules.” Communications of the Association for

Computing Machinery 15 (12): 1053-1058.

Patrikalakis, Nicholas. 1993. “Surface-to-Surface Intersections.”

Computer Graphics and Applications 13 (1): 89–95.

Paulson, Boyd. 1976. “Designing to Reduce Construction Costs.” Journal

of the Construction Division 102 (4): 587–592.

Payne, Andrew, and Rajaa Issa. 2009. “Grasshopper Primer.” Second

edition. LIFT Architects. Accessed 19 November. http://www.

liftarchitects.com/downloads/.

Payne, James. 2010. Beginning Python: Using Python 2.6 and Python 3.1.

Indiana: Wiley.

Peters, Brady, and Tobias Olesen. 2010. “Integrating Sound Scattering

Measurements in the Design of Complex Architectural

Surfaces.” In Future Cities: 28th eCAADe Conference

Proceedings, 481–491. Zurich: ETH Zurich.

Philipson, Graeme. 2005. “A Short History of Software.” In Management,

Labour Process and Software Development: Reality Bites, edited

by Rowena Barrett, 12-39. London: Routledge.

Phillips, W. 1974. “On the Distinction Between Sensory Storage and

Short-term Visual Memory.” Perception and Psychophysics 16

(2): 283–290.

Piker, Daniel. 2011. “Using Kangaroo (Grasshopper Version) (DRAFT).”

Accessed 19 November 2012. https://docs.google.com/

document/preview?id=1X-tW7r7tfC9duICi7XyI9wmPkGQU

PIm_8sj7bqMvTXs.

RTC (Revit Technology Corporation). 2000a. “Revit Technology

Corporation Launches Industry’s First Parametric Building

Modeler.” Press release, 5 April. Waltham.

———. 2000b. “Revit Technology Corporation ‑ Product.” http://revit.

com/cornerstone/index.html. Copy archived 10 May 2000.

http://web.archive.org/web/20000510111053/http://revit.

com/cornerstone/index.html.

Read, Phil, James Vandezande, and Eddy Krygiel. 2012. Mastering

Autodesk Revit Architecture 2013. Indianapolis: Wiley.

228

Rittel, Horst, and Melvin Webber. 1973. “Dilemmas in a General Theory

of Planning.” Policy Sciences 4(1973): 155–169.

Royce, Winston. 1970. “Managing the Development of Large Software

Systems.” In Proceedings of IEEE WESCON, 328–338.

Rubin, Frank. 1987. “‘GOTO Considered Harmful’ Considered Harmful.”

Communications of the Association for Computing Machinery

30 (3): 195–196.

Ruiter, Maurice, ed. 1988. Advances in ComputerGraphics III. Berlin:

Springer-Verlag.

Rutten, David. 2012. “Programming, Conflicting Perspectives.”

I Eat Bugs For Breakfast. Published 1 April. http://

ieatbugsforbreakfast.wordpress.com/2012/04/01/

programming-conflicting-perspectives/.

Scheurer, Fabian, and Hanno Stehling. 2011. “Lost in Parameter Space ?”

Architectural Design 81 (4): 70-79.

Schultz, Carl, Robert Amor, and Hans Guesgen. 2009. “Unit Testing for

Qualitative Spatial and Temporal Reasoning.” In Proceedings

of the Twenty-Second International Florida Artificial

Intelligence Research Society Conference, edited by Lane Chad

and Hans Guesgen, 402–407. Florida: AAAI Press.

Schumacher, Patrik. 2008. “Parametricism as Style: Parametricist

Manifesto.” Paper presented at The Darkside Club, 11th

Architecture Biennale, Venice, 11 September. Digital

copy of text, accessed 17 November 2012. http://www.

patrikschumacher.com/Texts/Parametricism as Style.htm.

———. 2009a. “Parametricism: A New Global Style for Architecture and

Urban Design.” Architectural Design 79 (4): 14–23.

———. 2009b. “Parametricism.” Keynote presentation at Intensive

Fields, University of Southern California, Los Angeles.

Digital video of presentation, accessed 17 November

2012. http://www.patrikschumacher.com/Videos/vid_01_

intensive.html.

———. 2010. “The Parametricist Epoch: Let the Style Wars Begin.”

Architects’ Journal 231 (16): 41-45.

Schön, Donald. 1983. The Reflective Practitioner: How Professionals Think

in Action. London: Maurice Temple Smith.

Seibel, Peter. 2009. Coders at Work: Reflections on the Craft of

Programming. New York: Apress.

229

Sharp, John. 1992. “A Brief Introduction to Data Flow.” In Dataflow

Computing: Theory and Practice, edited by John Sharp.

Norwood: Ablex.

Shelden, Dennis. 2002. “Digital Surface Representation and the

Constructibility of Gehry’s Architecture.” PhD dissertation,

Massachusetts Institute of Technology.

Side Effects Software. 2012. “Houdini User Guide.” Accessed Dec

20. http://www.sidefx.com/index.php?option=com_

content&task=blogcategory&id=192&Itemid=346

Simons, Daniel, and Daniel Levin. 1997. “Change Blindness.” Trends in

Cognitive Sciences 1 (7): 261–267.

Smith, Rick. 2007. “Technical Notes From Experiences and Studies

in Using Parametric and BIM Architectural Software.”

Published 4 March. http://www.vbtllc.com/images/

VBTTechnicalNotes.pdf.

———. 2010. “About Virtual Build Technologies.” Accessed 19

November 2012. http://www.vbtllc.com/index_about.html.

Sorensen, Andrew. 2005. “Impromptu : An Interactive Programming

Environment for Composition and Performance.” In

Generate and Test: Proceedings of the Australasian Computer

Music Conference 2005, 149-154. Brisbane: ACMA.

Sorensen, Andrew, and Henry Gardner. 2010. “Programming With Time:

Cyber-physical Programming with Impromptu.” In Onward!

Proceedings of the Association for Computing Machinery

International Conference on Object Oriented Programming

Systems Languages and Applications, 822–834. Tahoe:

Association for Computing Machinery.

Stake, Robert. 2005. “Qualitative Case Studies.” In The SAGE Handbook

of Qualitative Research, edited Norman Denzin and Yvonnas

Lincoln, 443-466. Third edition. Thousand Oaks: Sage.

Sterling, Leon, and Ehud Shapiro. 1994. The Art of Prolog: Advanced

Programming Techniques. Second edition. Massachusetts:

MIT Press.

Stiles, Robert. 2006. “Aggregation Strategies.” Masters dissertation,

University of Bath.

Summit, Steve. 1996. C Programming FAQs: Frequently Asked Questions.

Reading, MA: Addison-Wesley.

230

Sutherland, Ivan. 1963. “Sketchpad: A Man-Machine Graphical

Communication System.” PhD dissertation, Massachusetts

Institute of Technology.

Sutherland, Jeff, and Ken Schwaber. 2011. “The Scrum Guide: The

Definitive Guide to Scrum – The Rules of the Game.” White-

paper. Scrum.org.

Swinson, Peter. 1982. “Logic Programming: A Computing Tool for the

Architect of the Future.” Computer-Aided Design 14 (2):

97-104.

TIOBE Software. 2012. “TIOBE Programming Community Index for May

2012.” Published May. http://www.tiobe.com/index.php/

content/paperinfo/tpci/index.html.

Teresko, John. 1993. “Parametric Technology Corp.: Changing the way

Products are Designed.” Industry Week, 20 December.

Terzidis, Kostas. 2006. Algorithmic Architecture. New York: Architectural

Press.

The Standish Group. 1994. “The CHAOS Report 1994.” White-paper.

Boston: The Standish Group.

———. 2009. “The CHAOS Report 2009.” White-paper. Boston: The

Standish Group.

———. 2012. “The CHAOS Report 2012.” White-paper. Boston: The

Standish Group.

Van Roy, Peter. n.d. “Book Cover.” Accessed 19 November 2012. http://

www.info.ucl.ac.be/~pvr/bookcover.html.

Van Roy, Peter, and Seif Haridi. 2004. Concepts, Techniques, and Models of

Computer Programming. Massachusetts: MIT Press.

Victor, Bret. 2012. “Inventing on Principle.” Presentation at Turing

Complete: Canadian University Software Engineering

Conference, Montreal, 20 January. Digital video of

presentation, accessed 19 November 2012. http://vimeo.

com/36579366.

Walker, John. 1983. “Information Letter #10.” Internal memo at

Autodesk Inc. 25 October. Subsequently published as part

of John Walker ed. 1994, The Autodesk File: Bits of History,

Words of Experience, Fourth edition, Self published with

earlier editions published in 1989 by New Riders Publishing.

Wallner, Johannes, and Helmut Pottmann. 2011. “Geometric Computing

for Freeform Architecture.” Journal of Mathematics in

Industry 1 (1): 1-11.

231

Wang, Ge, and Perry Cook. 2004. “On-the-fly Programming : Using Code

as an Expressive Musical Instrument.” In Proceeding of the

2004 International Conference on New Interfaces for Musical

Expression, 138–143.

Watson, Arthur, and Thomas McCabe. 1996. Structured Testing: A

Testing Methodology Using the Cyclomatic Complexity

Metric. Gaithersburg: National Institute of Standards and

Technology.

Weisberg, David. 2008. “The Engineering Design Revolution: The People,

Companies and Computer Systems that Changed Forever

the Practice of Engineering.” Accessed 23 July 2011. http://

www.cadhistory.net.

Weisstein, Eric. 2003. CRC Concise Encyclopedia of Mathematics. Second

edition. Boca Raton: Chapman & Hall/CRC.

West, Dave, and Tom Grant. 2010. “Agile Development : Mainstream

Adoption Has Changed Agility.” White-paper. Forrester.

Whitaker, William. 1993. “Ada: The Project, The DoD High Order

Language Working Group.” ACM SIGPLAN Notices 28 (3):

229–331.

Wirth, Niklaus. 2008. “A Brief History of Software Engineering.” IEEE

Annals of the History of Computing 30 (3): 32-39.

Wong, Yuk Kui, and John Sharp. 1992. “A Specification and Design

Methodology Based on Data Flow Principles.” In Dataflow

computing: Theory and Practice, edited by John Sharp, 37-79.

Norwood: Ablex.

Woodbury, Robert. 1990. “Variations in Solids : A Declarative

Treatment.” Computer and Graphics 14 (2): 173-188.

———. 2010. Elements of Parametric Design. Abingdon: Routledge.

Woodbury, Robert, Robert Aish, and Axel Kilian. 2007. “Some Patterns

for Parametric Modeling.” In Expanding Bodies: 27th Annual

Conference of the Association for Computer Aided Design

in Architecture, edited by Brian Lilley and Philip Beesley,

222–229. Halifax, Nova Scotia: Dalhousie University.

Yessios, Chris. 2003. “Is There More to Come?” In Architecture in the

Digital Age: Design and Manufacturing, edited by Branko

Kolarevic, 259–68. New York: Spon Press.

232

Young, Michal, and Stuart Faulk. 2010. “Sharing What We Know About

Software Engineering.” In Proceedings of the Workshop on

Future of Software Engineering Research, FoSER 2010, edited

by Gruia-Catalin Roman and Kevin Sullivan, 439–442. Santa

Fe: Association for Computing Machinery.

van der Meulen, Meine, and Miguel Revilla. 2007. “Correlations Between

Internal Software Metrics and Software Dependability in a

Large Population of Small C/C++ Programs.” In Proceedings

of the 18th IEEE International Symposium on Software

Reliability, 203–208. Sweden: IEEE Computer Society Press.

Figure 1	 Lincoln Laboratory 1964. 1

Figure 2	 Lincoln Laboratory 1964. 2

Figure 3	 Lincoln Laboratory 1964. 2

Figure 4	 Lincoln Laboratory 1964. 2

Figure 5	 Robert Woodbury 2010, 11. 16

Figure 6	 Federico Bucci and Marco Mulazzani 2000, 114 17

Figure 7	 James Dana 1837, 41 & 43 . 20

Figure 8	 Roland Hudson 2010, 5 & 9 . 28

Figure 9	 Boyd Paulson 1976, 588. 33

Figure 10	 Daniel Davis. 33

Figure 11	 Barry Boehm 1981, 40. 54

Figure 12	 Kent Beck 1999, 26. 54

Figure 13	 Kent Beck 1999, 28. 54

Figure 14	 Daniel Davis, based on: The Standish Group 1994 & 2012. 58

Figure 15	 Daniel Davis. 60

Figure 16	 Daniel Davis, based on: Appleby and VandeKopple 1997. . 62

Figure 17	 Daniel Davis. 78

Figure 18	 Daniel Davis. 78

Figure 19	 Daniel Davis. 80

Figure 20	 Daniel Davis. 80

Figure 21	 Daniel Davis. 80

Figure 22	 Model by Ryan Hernandez, http://www.grasshopper3d.com/

forum/topics/deforming-circles. 81

Figure 23	 Daniel Davis. 82

10.3	 Illustration Credits

233

Figure 24	 Model-313 by Andy VanMater, http://www.grasshopper3d.

com/forum/topics/curvebrep-intersection-errors; Model-

660 by Peter Kluck, http://www.grasshopper3d.com/

forum/topics/structural-profile-length; Model-1860 by

Isak Bergwall, http://www.grasshopper3d.com/forum/

topics/need-som-help-with-circles; Model-1913 by Chris

Tietjen, http://www.grasshopper3d.com/forum/topics/

how-can-i-project-objectlike; Model-1983 by Tijl Uijtenhaak,

http://www.grasshopper3d.com/forum/topics/trouble-with-

surface-split; Model-2015 by Rassul Wassa, http://www.

grasshopper3d.com/forum/topics/create-inellipse-for-a. . 83

Figure 25	 Daniel Davis. 85

Figure 26	 Daniel Davis. 85

Figure 27	 Lluís Bonet i Garí circa 1945, drawing on display at the

Sagrada Família. 95

Figure 28	 Daniel Davis. 96

Figure 29	 Daniel Davis. 97

Figure 30	 Daniel Davis. 97

Figure 31	 Peter Van Roy and Seif Haridi 2004, cover 99

Figure 32	 Daniel Davis, based on: Appleby and VandeKopple 1997. 100

Figure 33	 Daniel Davis. 101

Figure 34	 Daniel Davis. 102

Figure 35	 Daniel Davis. 102

Figure 36	 Daniel Davis. 106

Figure 37	 Daniel Davis. 108

Figure 38	 Daniel Davis. 108

Figure 39	 Daniel Davis. 108

Figure 40	 Daniel Davis. 109

Figure 41	 Daniel Davis. 111

Figure 42	 Photograph by Mark Burry, September 2012. 118

Figure 43	 Photograph by Daniel Davis, March 2011. 121

Figure 44	 Photograph by Anders Ingvartsen, March 2011 122

Figure 45	 Photograph by Anders Ingvartsen, March 2011 123

Figure 46	 Corrado Böhm and Giuseppe Jacopini 1966. 127

Figure 47	 Daniel Davis. 128

Figure 48	 Model-55 by Muhammad Nabeel Ahmed, http://www.

grasshopper3d.com/forum/topics/apply-facade-on-surface;

Model-1088 by Pieter Segeren, http://www.grasshopper3d.

com/forum/topics/stepped-boxes-to-attractor.. 130

234

Figure 49	 Daniel Davis. 131

Figure 50	 Daniel Davis. 137

Figure 51	 Diagram by Daniel Davis with photographs by: Ansers

Ingvartsen; Stephanie Braconnier; Anders Deleuran; and

Pernille Klemp. 143

Figure 52	 Daniel Davis. 145

Figure 53	 Daniel Davis. 147

Figure 54	 Dermoid design team. 148

Figure 55	 Screenshot of http://parametricmodel.com/, accessed

January 2013. 150

Figure 56	 Screenshot of http://parametricmodel.com/Hyperboloid/35.

html, accessed January 2013. 150

Figure 57	 Photograph by Daniel Davis, March 2011. 155

Figure 58	 Photograph by Daniel Davis, March 2011. 156

Figure 59	 Photograph by Daniel Davis, March 2011. 157

Figure 60	 Daniel Davis. 159

Figure 61	 Bret Victor 2012. 162

Figure 62	 Daniel Davis. 163

Figure 63	 Daniel Davis. 168

Figure 64	 Daniel Davis. 171

Figure 65	 Daniel Davis. 172

Figure 66	 Daniel Davis. 172

Figure 67	 Daniel Davis. 173

Figure 68	 Daniel Davis. 174

Figure 69	 Daniel Davis. 176

Figure 70	 Daniel Davis. 177

Figure 71	 Daniel Davis. 178

Figure 72	 Daniel Davis. 179

Figure 73	 Daniel Davis. 181

Figure 74	 Photograph by John Gollings, March 2013. 183

Figure 75	 Daniel Davis. 184

Figure 76	 Daniel Davis. 186

Figure 77	 Daniel Davis. 187

Figure 78	 Daniel Davis. 202

Figure 79	 Daniel Davis. 206

Figure 80	 Daniel Davis. 208

	1	Introduction
	1.1	Problems with Flexibility
	1.2	The Flexibility of Code
	1.3	Aim
	1.4	Methodology
	1.5	Thesis Structure

	2	The Challenges of Parametric Modelling
	2.1	What is Parametric Modelling?
	2.2	Why Use a Parametric Model?
	2.3	Reported Difficulties with Models in Practice
	2.4	Conclusion

	3	The Design of Software Engineering
	3.1	The Software Crisis
	3.2	The Software Engineering Body of Knowledge
	3.3	Conclusion

	4	Measuring Flexibility
	4.1	Research Method
	4.2	Research Instruments
	4.3	Quantitative Flexibility
	4.4	Qualitative Flexibility
	4.5	Conclusion

	5	Case A: Logic Programming
	5.1	Introduction
	5.2	Programming Paradigms
	5.3	Challenges of Dataflow
	5.4	Logic Programming
	5.5	Logic Programming Parametric Relations
	5.6	Application to the Sagrada Família
	5.7	Analysis of Programming Paradigms
	5.8	Conclusion

	6	Case B: Structured Programming
	6.1	Introduction
	6.2	Structured Programming
	6.3	Architects Structuring Visual Programs
	6.4	Understandability of Visual Programs in Architecture
	6.5	Structured Programming in Practice
	6.6	Sharing Modules Online
	6.7	Conclusion

	7	Case C: Interactive Programming
	7.1	Introduction
	7.2	The Normative Programming Process
	7.3	The Interactive Programming Process
	7.4	Interactive Visual Programming
	7.5	Introducing Yeti
	7.6	Benchmarking Yeti
	7.7	Conclusion

	8	Discussion: Beyond Toolmaking
	8.1	Shared Challenges
	8.2	Shared Methods
	8.3	Shared Practices
	8.4	Implications

	9	Conclusion
	10	Bibliography
	10.1	Published During Study
	10.2	Works Cited
	10.3	Illustration Credits

	Figure 1	Lincoln Laboratory 1964
	Figure 2	Lincoln Laboratory 1964
	Figure 3	Lincoln Laboratory 1964
	Figure 4	Lincoln Laboratory 1964
	Figure 5	Robert Woodbury 2010, 11
	Figure 6	Federico Bucci and Marco Mulazzani 2000, 114
	Figure 7	James Dana 1837, 41 & 43
	Figure 8	Roland Hudson 2010, 5 & 9
	Figure 9	Boyd Paulson 1976, 588
	Figure 10	Daniel Davis
	Figure 11	Barry Boehm 1981, 40
	Figure 12	Kent Beck 1999, 26
	Figure 13	Kent Beck 1999, 28
	Figure 14	Daniel Davis, based on: The Standish Group 1994 & 2012
	Figure 15	Daniel Davis
	Figure 16	Daniel Davis, based on: Appleby and VandeKopple 1997
	Figure 17	Daniel Davis
	Figure 18	Daniel Davis
	Figure 19	Daniel Davis
	Figure 20	Daniel Davis
	Figure 21	Daniel Davis
	Figure 22	Model by Ryan Hernandez, http://www.grasshopper3d.com/forum/topics/deforming-circles
	Figure 23	Daniel Davis
	Figure 24	Model-313 by Andy VanMater, http://www.grasshopper3d.com/forum/topics/curvebrep-intersection-errors; Model-660 by Peter Kluck, http://www.grasshopper3d.com/forum/topics/structural-profile-length; Model-1860 by Isak Bergwall, http://www.grasshopp
	Figure 25	Daniel Davis
	Figure 26	Daniel Davis
	Figure 27	Lluís Bonet i Garí circa 1945, drawing on display at the Sagrada Família
	Figure 28	Daniel Davis
	Figure 29	Daniel Davis
	Figure 30	Daniel Davis
	Figure 31	Peter Van Roy and Seif Haridi 2004, cover
	Figure 32	Daniel Davis, based on: Appleby and VandeKopple 1997
	Figure 33	Daniel Davis
	Figure 34	Daniel Davis
	Figure 35	Daniel Davis
	Figure 36	Daniel Davis
	Figure 37	Daniel Davis
	Figure 38	Daniel Davis
	Figure 39	Daniel Davis
	Figure 40	Daniel Davis
	Figure 41	Daniel Davis
	Figure 42	Photograph by Mark Burry, September 2012
	Figure 43	Photograph by Daniel Davis, March 2011
	Figure 44	Photograph by Anders Ingvartsen, March 2011
	Figure 45	Photograph by Anders Ingvartsen, March 2011
	Figure 46	Corrado Böhm and Giuseppe Jacopini 1966
	Figure 47	Daniel Davis
	Figure 48	Model-55 by Muhammad Nabeel Ahmed, http://www.grasshopper3d.com/forum/topics/apply-facade-on-surface; Model-1088 by Pieter Segeren, http://www.grasshopper3d.com/forum/topics/stepped-boxes-to-attractor.
	Figure 49	Daniel Davis
	Figure 50	Daniel Davis
	Figure 51	Diagram by Daniel Davis with photographs by: Ansers Ingvartsen; Stephanie Braconnier; Anders Deleuran; and Pernille Klemp.
	Figure 52	Daniel Davis
	Figure 53	Daniel Davis
	Figure 54	Dermoid design team
	Figure 55	Screenshot of http://parametricmodel.com/, accessed January 2013
	Figure 56	Screenshot of http://parametricmodel.com/Hyperboloid/35.html, accessed January 2013
	Figure 57	Photograph by Daniel Davis, March 2011
	Figure 58	Photograph by Daniel Davis, March 2011
	Figure 59	Photograph by Daniel Davis, March 2011
	Figure 60	Daniel Davis
	Figure 61	Bret Victor 2012
	Figure 62	Daniel Davis
	Figure 63	Daniel Davis
	Figure 64	Daniel Davis
	Figure 65	Daniel Davis
	Figure 66	Daniel Davis
	Figure 67	Daniel Davis
	Figure 68	Daniel Davis
	Figure 69	Daniel Davis
	Figure 70	Daniel Davis
	Figure 71	Daniel Davis
	Figure 72	Daniel Davis
	Figure 73	Daniel Davis
	Figure 74	Photograph by John Gollings, March 2013
	Figure 75	Daniel Davis
	Figure 76	Daniel Davis
	Figure 77	Daniel Davis
	Figure 78	Daniel Davis
	Figure 79	Daniel Davis
	Figure 80	Daniel Davis

