

CAAD Futures 2011 : Designing Together, ULg, 2011
© P. Leclercq, A. Heylighen and G. Martin (eds)

55

Untangling Parametric Schemata : Enhancing
Collaboration through Modular Programming

DAVIS Daniel, BURRY Jane and BURRY Mark
Royal Melbourne Institute of Technology, Australia
daniel.davis@rmit.edu.au, jane.burry@rmit.edu.au, mark.burry@rmit.edu.au

Abstract. Presently collaboration is difficult on complex parametric models, in
part due to the illegibility of unstructured parametric schemata. This lack of
legibility makes it hard for an outside author to understand a parametric model,
reducing their ability to edit and share the model. This paper investigates whether
the legibility of a parametric model is improved by restructuring the schema with
modular programming principles. During a series of thinking-aloud interviews,
where designers were asked to describe the function of unfamiliar schemata, the
schema structured with modular programming principles were consistently better
understood. Modular programming is found to be a beneficial, albeit small,
change to parametric modelling that derives clear benefits in terms of legibility,
particularly when the model is complex and used in a collaborative environment.

1. Introduction : Why parametric modelling can be difficult

Collaboration on a parametric model occurs through the shared language of the
parametric schema. In a parametric model, the schema is the collection of
relationships between functions and parameters, with the model itself being a
geometric model where the form is a function of these finite parameters. The
legibility of this schema is a central factor in determining how easily other team
members can modify and reuse the model. An unstructured schema, represented
as a graph, resembles a tangle of spaghetti, which makes it hard for team
members to follow geometric relationships through the schema.

Historically parametric models have been small, making the few relationships
they did contain easily understood regardless of the structure. Better software,
more computational power, and the widespread adoption of parametric modelling,
has seen the complexity and size of parametric models increase – the authors own

D. DAVIS, J. BURRY and M. BURRY

56

recent projects have involved schemata with over 10,000 relationships. At this
scale, the structure of the schema is critically important in making sense of the
interwoven relationships the schema contains. This is especially true in a
collaborative environment where the person trying to understand the schema
might not be the person who created the schema.

Ideally the geometry of a parametric model can be modified by changing the
model parameters. Understanding the schema becomes vital when the schema
does not contain the parameters to modify the geometry in the desired way. When
this occurs, the schema needs to be modified to include the desired parameter in a
process Woodbury describes as "erase, edit, relate and repair"[14]. If the schema
is tangled, knowing where to "erase, edit, relate and repair" can be difficult
because the function of each node is not obvious and once the appropriate node is
found, the implications for erasing this node can be very hard to trace through the
many layers of interwoven relationships. On some projects making these changes
can become so difficult that building a new schema is easier [3]. A number of
authors have cited this as the cause of project delays, the cause of design options
not being explored, and the cause of parametric modelling being relegated largely
to design rationalisation [2, 3, 10, 15].

A similar problem existed in computer science during the 1960’s when
unstructured programs, relying on the GOTO statement, reached a point where
the program flow became so hard to understand it was feared complex programs
were unmaintainable – starting over was easier than trying to maintain the code
[4, 11]. One solution was organise the code with modules, which reduced reliance
on the GOTO statement and increased code legibility. This paper discusses a
method of applying the principles of modular programming to the organisation of
parametric schemata, with the aim of investigating whether modular
programming increases the legibility of parametric models. To achieve this aim,
the paper reports on a series of "thinking aloud" interviews designed to assess the
legibility of schemata structured with modular programming in relation to the
legibility of unstructured schemata. Also discussed is the success of a website
setup to exchange parametric modules. The paper begins by reporting on previous
attempts to translate the benefits of computer science into parametric modelling,
and why modular programming may help increase the legibility of parametric
models.

2. Drawing on computer science in architecture
Computer science and architecture have an intertwined history of sharing and
borrowing concepts from each other. From the outset programming was seen in
relation to engineering and architecture with senior programmers adopting the
title of "software architect". A well cited example of software and architecture

UNTANGLING PARAMETRIC SCHEMATA ENHANCING COLLABORATION …

57

informing each other is Ivan Sutherland’s 1963 thesis on Sketchpad, where he
invented both Object Oriented programming and CAD/Parametric modelling –
two concepts that were interdependent to Sutherland. As Object Oriented
programming became today’s dominant programming paradigm, Gamma, Helm,
Johnson and Vlissides (The Gang of Four) drew upon the work of architect
Christopher Alexander in developing their ‘design patterns’ for structuring object
oriented code [6].

The recent trend in architecture towards scripting and parametric modelling
owes much to computer science. Notably The Gang of Four’s design patterns
were reappropriated by Woodbury et al. into Some Patterns for Parametric
Modelling [15]. One of these patterns, Clear Names, addresses the structure of the
schema and will be investigated further in this paper. The other patterns solve
design problems, such as how to implement recursion. Woodbury et al. work
shows that the methods for structuring code, which computer scientists have spent
over 50 years developing, can be applied to parametric schemata whilst retaining
the benefits experienced in computer science. The primary difference between
Woodbury et al. work and our work is that their patterns focus on how to structure
code to solve a particular design problem whereas this paper investigates how to
structure code to increase schema legibility. The following section will discuss
how modular programming improves code legibility before applying this to
parametric modelling.

3. Modular programming
In the late 1960’s, programming was at a crisis [5]. In some ways this crisis
parallels the problems currently present in parametric modelling : the essential
mechanics of programming had been developed, and the speed of computers was
increasing exponentially along with the size of programs, but the unstructured
nature of these programs was leading to tangles of GOTO statements, which were
difficult to produce in a team environment and hard to maintain [9]. During this
period it was feared that computer programs were becoming too complex for
humans to write, and that this would ultimately limit the application of
programming [4]. There was no "silver bullet" to the software crisis but one of the
earliest and still prevalent strategies was to structure the code into modules [1].

A module in a dataflow programming language (the programming paradigm of
graph based parametric schemata), defined by Wong and Sharp, is "a sequence of
program instructions bounded by an entry and exit point", which performs "one
problem-related task" [16]. Leaving aside the precise details of a module’s
implementation, of which there are many, all modules have the general
characteristics Wong and Sharp discuss :

D. DAVIS, J. BURRY and M. BURRY

58

• Modules perform one task, which is often conveyed through the name of the
module.

• Modules contain defined input parameters – the only place data enters the
module.

• Modules contain defined output parameters – the only place data leaves the
module.

• Modules have instructions between these parameters, which can only be
evoked by passing data through the module’s inputs.

These changes help organise code by preventing GOTO commands threading
wildly through the code and instead ensures that self-contained chunks of code
only connect through designated entry and exit points, defined by the modules.
The advantage of these changes was not initially apparent, and many
programmers were opposed to structuring code believing it destroyed the art of
programming. This opposition diminished once the benefits of modular
programming became apparent [9] :
• Modules could be shared and reused because the code was self-contained.
• People could work collaboratively by developing modules separately and

connecting them together later.
• Debugging could occur at the module level rather than the program level.
• The code became self-documenting – the name of the module and the inputs

and outputs, gives some indication of what the module does without looking
at external documentation.

Modular programming is one foundation of the structured programming
movement. The concept of assembling a program from smaller, task oriented,
pieces of code, persists in all modern programming languages (although
depending on precise details of the implementation, a module may be called a
function or an object or a method). The widespread success and adoption of
modular programming in computer science, as well as the parallels between the
tangles of GOTO statements and the tangles of relationships in parametric
schemata, is reason to investigate whether the benefits of modular programming
translate to parametric modelling.

UNTANGLING PARAMETRIC SCHEMATA ENHANCING COLLABORATION …

59

4. Applying modular programming to parametric architecture

Fig. 1. A typical module in a graph based parametric model.

The principles of modular programming translate to graph-based parametric
schemata. Figure 1 shows an example module, in a graph based schema. Like
with Wong and Sharp’s modules, the key characteristics of this module are :
1. Title. The module performs one task, which is identified with a concise and

descriptive title.
2. Inputs. Any relationship into the module are defined and grouped on the

right. This single point of entry clearly displays what data the module
requires, and enables the easy redefinition of relationships between the inputs
and other nodes.

3. Outputs. Any data returned by the module is grouped to the right, providing
a single point to gather the data the module produces, and like with the inputs,
the easy redefinition of relationships.

4. Group. The whole module is grouped together, making it easy to reuse by
copy and pasting. The colour of the group makes it easy to identify within the
entire schema.

5. Description. The module contains a short description of how it works to help
anyone modifying its function.

In parametric modelling, like with computer science, modules appear so simple
they almost seem self-evident. However, an informal survey of parametric models
indicates that most architects do not apply any of the techniques for modularising
a parametric model shown above and instead prefer to leave their model

D. DAVIS, J. BURRY and M. BURRY

60

unstructured like in Figure 2. This is not because parametric software inhibits
structure; some, such as McNeel’s Grasshopper 0.8, encourage it through features
like clustering and grouping. Therefore, while modular programming is a basic
modification to existing parametric models, the underuse of this technique, and
the evidence it is beneficial in other domains, warrants an interest in whether
these benefits translate to parametric modelling.

Fig. 2. The module from Fig. 1 linked with other modules (above).
The equivalent Schema without modules (below). These schemata are Schema-A1

 and Schema-C1 respectively, referred to in the next section

5. Evaluating parametric models constructed with modular
programming

5.1. Method

To ascertain the legibility of schemata structured with modular programming
principles, relative to the legibility of unstructured schemata, we conducted a
series of "thinking-aloud" interviews. The participants were given a schema and
asked to verbally describe how the schema parameters manipulate the geometry,
which gives an understanding of how legible they found the schema.

Thinking-aloud interviews are an interview method commonly used in
computer usability studies [13]. Typically the user is asked to perform a task in a
software package and describe "things they find confusing, decisions they are
making" and what they are reading [8]. The method provides an insight into how
users carry out a task and what the users find difficult and easy about the task,
although users are unreliable sources for understanding why this is [8]. In this
case, the task is to describe the functionality of a schema and the data gathered
gives an insight into how a designer comes to understand what a schema does.

UNTANGLING PARAMETRIC SCHEMATA ENHANCING COLLABORATION …

61

The participants were selected from a group of 25 students studying
architecture at the Royal Danish Academy of Art, who were attending a weeklong
workshop on parametric modelling. On the final day of the workshop, four
students were randomly selected to take part in the interviews. Using four
participants provides a statistically significant sample according to usability
expert Jacob Neilson (who uses thinking-aloud interviews in his own research)
[12]. The selected students each had between one and seven years experience
using computers to design architecture, although they all had only one years
experience using parametric software – making them competent modellers, but by
no means experts. As will be discussed shortly, none of the participants were
familiar with the workings of the schemata they were shown, so they take on a
position similar to a colleague who is given another’s parametric model for the
first time and needs to understand it before they can collaborate.

The interviews were conducted in private, at a computer. The computer
contained the graph-based parametric software the participants used during the
workshop. With this software, the interviewer opened one schema at a time for
the participant. The participant could not see the geometry the schema produced,
but was free to explore the graph by dragging and zooming on screen. The
participants were directed to think-aloud by describing how the schema
parameters manipulate the geometry. This required the participant identifying the
inputs and outputs on the schema, and then describing the main geometric steps to
generate the geometry. This question was chosen to expose how legible the
schema is to someone preparing to "erase, edit, relate and repair", the schema and
needing to understand the main stages of the schema before they do so.

Table 1. The five schemata shown.

NAME TYPE SIZE NODES RELATIONS /
EDGES

FAMILIAR EQUIVA-
LENT TO

A1 Modular Small 41 52 Yes C1

A2 Modular Small 33 39 Yes C2

B Modular Large 121 142 No

C1 Unstruct Small 26 37 Yes A1

C2 Unstruct Small 20 26 Yes A2

The participants saw three schemata from a pool of five possible schemata
They either saw schemas A1, B and C1 or they saw schemas A2, B and C2, in
that order. The combination they saw was randomly selected to help reduce the
likelihood that the results would be biased by any one schema being
uncharacteristically legible or illegible.

D. DAVIS, J. BURRY and M. BURRY

62

Fig. 3. The modular Schema-A2 (above) and the same schema in
an unstructured form, Schema-C2 (below).

Schema-A1 and Schema-A2, were small, modular parametric models that did
tasks the students had learnt about in the workshop – projecting lines onto
surfaces. Schema-A1 and Schema-A2, are a modular version of the unstructured
Schema-C1 and Schema-C2, meaning the structure of the schema is the only
difference between A1 and C1, or A2 and C2. The participants were not aware
that Schema-A and Schema-C were functionally the same, and none realised
during the interviews. Schema-B was a much larger modular parametric model,
which did a task the students were unfamiliar with – drawing triangles on a
hemisphere from an inscribed polyhedron. It was expected that Schema-B would
prove far more challenging for the participants to understand due to its size.

Fig.4. The much larger Schema B, with 121 nodes.

UNTANGLING PARAMETRIC SCHEMATA ENHANCING COLLABORATION …

63

5.2. Results

5.2.1. Comparisons between schemata

When shown Schema-A, all of the participants could describe the inputs, outputs
and function of the schema. Half identified all of the major stages of the schema,
and the other half could identify most of them, although they often would not
understand the function of specific nodes within a particular stage. Yet when
shown Schema-C, no one realised it was functionally identical to Schema-A, and
all guessed incorrectly what Schema-C did. On Schema-C they struggled to find
the inputs and outputs, and when they did, they could say what type of geometry
was represented, but no one could describe what this geometry would look like. A
typical comment from Participant-2, when describing the function was : "It
relaxes the lines ? That’s a guess though, because I am not sure what any of these
elements [talking about the nodes] I am not sure what any of them do". We were
surprised participants found it so difficult to identify the function of the nodes in
Schema-C, and particularly that none realised Schema-A and Schema-C were
equivalent. This demonstrates that Schema-A were drastically more legible than
Schema-C.

Interestingly, the participants much better understood Schema-B, which is far
larger than Schema-C and functioned on a problem they were unfamiliar with.
The size of Schema-B meant it took the participants longer to trace the flow of
data through the model compared with Schema A or C. However, unlike Schema-
C – where the participants started guessing the functions – all participants could
methodically work through the stages of the schema from inputs to outputs,
although because the function of Schema-B had not been taught to the students,
some struggled to understand why the schema performed these operations.

Instinctively it seems a larger schema would produce a less legible schema.
Indeed a catalyst for this research was the assumption that parametric models
were becoming larger as architects embraced parametric modelling, and the size
of some models had reached a point where sharing a model was difficult because
the number of connections made it illegible. Significantly, and against our initial
assumptions, this study has shown that the size of a schema is not necessarily a
measure of its legibility; it is possible to have a large and legible schema,
provided the schema is well structured. Scale still plays a role, and the smaller
Schema-A was more legible to the participants than the larger Schema-B. In some
ways this finding is similar to findings in linguistics, where the difficulty of text
can be measured as a factor of its length and its structure (as well as its
vocabulary) [7].

5.2.2. Measuring legibility

While size is not the exclusive measure of legibility, it is interesting to note the
ratio between nodes and edges in the more legible Schema-A and Schema-B is far

D. DAVIS, J. BURRY and M. BURRY

64

lower than with Schema-C (1.23 on average vs 1.42, where 1 is the minimum
possible ratio). However the Cyclomatic Complexity does not reflect this change,
meaning that the number of unique paths through Schema-A and Schema-C are
the same, while the number of nodes on these paths have changed. Cyclomatic
Complexity is one measure of software quality used by computer scientists,
primarily to plan and monitor projects. A similar metric would be desirable in
parametric modelling, however measures of software quality like Cyclomatic
Complexity, lines of code and Fan-in and Fan-out, do not seem to successfully
distinguish between Schemata-A and Schemata-C. Our research is not conclusive
enough to define an alternative quantitative metric, but it is possible to draw some
qualitative guidelines for structuring legible schemata. When observing and
listening to the participants try to understand a schema, the key aspects of the
schema’s structure that guided them were:
• Names : Participants regularly referred to the names of nodes and the names

of node’s parameters as they explained the schema. This reinforces the "Clear
Names" design pattern suggested by Woodbury et al. [15].

• Positioning : in Schema-C where the input and output nodes are positioned
amongst the other nodes, participants struggled to identify them. This lead to
participants missing some of the generated geometry, or missing important
inputs to the schema. In Schema-A and Schema-B, where all the inputs are to
the left and all the outputs are to the right, the participants would quickly find
the inputs and outputs.

• Geometry Type : The participants would frequently click on nodes to
discover what type of geometry it produced (point, line or surface). This
seemed to help them understand some operations inside the schema. While
this is not strictly relevant to the structure of the schema, it is important for
parametric software developers to give the users context specific hints for the
parts they cannot understand.

• Headings : Like the names of the nodes, participants would often refer to the
headings of modules as they thought aloud. Keeping these short and
descriptive should aid comprehension.

• Explanations : Schema-A and Schema-B had explanations inside the schema
of what each module did. Participants seldom read these, indicating the self
documenting aspects of schema (achieved through clear names and a clear
structure) is a more important than external explanations. Nonetheless, for
tricky or unusual problems, explanations are still going to be necessary.

• Color: Interestingly two participants cited color as a major aid. The colors
were not chosen to signifying anything, so it is more likely that visually
separating parts of the schema – by color or by other means – visually aids a
user’s understanding of the relationships between modules within schemata.

UNTANGLING PARAMETRIC SCHEMATA ENHANCING COLLABORATION …

65

The key findings of this study are that legibility is not entirely related to
schema size, and those small changes to the structure of schema greatly improves
legibility. The most effective changes are including clear names and grouping
nodes together by function with one entry and exit point. The implications for
these changes are investigated further in the discussion.

6. Sharing modular parametric models
One anticipated advantage of modular parametric modelling was increased model
reuse and sharing brought about by easy interchange with existing schema, since
the modules are self-contained solutions to specific problems. To enable people to
share modular parametric models, and to track what was exchanged, we set up the
website parametricmodel.com, shortly before the Copenhagen workshop, in
November of 2010. This website was subsequently opened to the public, allowing
anyone to share parametric modules.

The upload function of the website prompts users to use modular programming
principles by asking them to define the inputs, and outputs, the problem the
module solves and how it works, along with uploading the module itself and an
image of it. These prompts were chosen to strike a balance between being
prescriptive in the structure and minimizing the barriers to uploading a module.
 In the downloading section of the site, the pages deliberately resemble the
documentation that typically comes with programming modules : it starts with a
short blurb, notes the inputs and outputs and then enters into a detailed description
of how the module works. If a user improves a module, they can upload their
improvement – much like Wikipedia – although this functionality is outside the
scope of the present discussion.

At the time of writing (March 2011), 15 authors have contributed 35 modules,
which have been downloaded by 7000 unique people over the four months the
site has been running. The rate of downloading indicates other designers find the
modules useful, and this is confirmed to some extent by the number of times the
site has been shared on social media sites.

The number of uploads, while relatively small, is larger than the 27 uploaded to
the Grasshopper forum during the same time period 1 (the site where graph based
parametric models are normally shared). Parametricmodel.com is by no measure a
huge success, but its significance is in demonstrating how easily modules can be
shared. If structuring parametric models into modules becomes normal, then reuse
(which is currently rare in parametric modelling) could be enabled by the ease

1 This is the number of modules uploaded to the "Sample and Examples" section of the site, after

removing all the posts that were actually questions.

D. DAVIS, J. BURRY and M. BURRY

66

with which modules can be extracted and shared. The success of sharing modules
depends in part upon the success of modular parametric modelling, and largely on
resolving intellectual property rights and peoples motivations to share modules.
Parametricmodel.com is one example of how module reuse and sharing may
occur.

7. Discussion : The implications for designers
On the whole, the results of this research should be seen as good news for
designers: relatively minor changes to the way they structure their graph based
parametric schema can greatly increase the legibility of a model, making it easier
to share a model collaboratively. The most valuable modifications appear to be :
1. Grouping together nodes that perform a particular task and in doing so

designate data entry and exists for the group – forming a module.
2. Clearly naming the module, the nodes and the data parameters.

The major question is whether designers have the time, or inclination, to fuss
with the structure of their schemata in this way. Woodbury asserts in The
Elements of Parametric Design, that most people using parametric models are
amateur programmers, and that "amateurs satisfice - they leave abstraction,
generality and reuse mostly for 'real programmers" [14]. This claim appears to be
based on the assumption that structuring the schema gets in the way of actually
designing. It is worthwhile pointing out that the introduction of structured
programming in computer science was initially met with resistance from
programmers who thought "engineering" the structure of code would destroy the
flow and the art of programming [9]. For computer science, the debate of whether
structure interferes with design became slowly resolved in practice as structured
programs took on ever more difficult and complex tasks [5]. Today, structuring
code in programming enables designs that would be too complex otherwise. For
architects, like programmers, the question of whether architects will structure
their schemata is likely to be resolved in practice. There are many arguments for
why architects might not be inclined to structure parametric schemata, but if
structure provides a way of collaborating on a design that would be too complex
otherwise, architects may have no option but to become "real programmers" and
learn about abstraction, generality and reuse.

The two drivers for this change will be how much value is placed on
complexity in the future, and how much more benefit can be extracted from
structuring parametric schemata. Currently complexity is fetishised in architecture
with projects often expressing it visually. If parametric modelling is to become
central to the design process, then it will be necessary to deal with complexity –
not, as it is now, for complexities sake – but because modelling a building is

UNTANGLING PARAMETRIC SCHEMATA ENHANCING COLLABORATION …

67

necessarily complex, particularly in a collaborative environment. Structuring the
schema is one way to make this increased complexity more legible. How much
more legible the schema can become depends on the further development of these
techniques. In computer science, structuring code has met ever diminishing
returns, and the same is likely in parametric modelling. In this sense, modular
programming is probably an outlier, and the translation of other, more difficult,
techniques are less likely to produce such a clear improvement. The other obvious
candidate for translation would be to enable instancing of groups rather than just
copying them. Whether architects end up structuring their programs depends; it
depends on whether the benefits of structure, namely increased complexity and
better collaboration, are seen as beneficial by architects, and it depends on how
much further development of structuring techniques can improve parametric
modelling.

No matter what the outcome is for structured programming in parametric
schemata, our research shows that structuring parametric schemata with modular
programming principles brings about immediate benefits in terms of legibility.
Some architects may be reluctant to do this, but for those making large models in
collaborative environments, we recommend implementing modular programming.

8. Conclusion
Based on this research, modular programming appears to increases the legibility
of parametric schemata. Creating a module in a graph-based parametric model
essentially involves grouping nodes together based on the task they perform,
providing a single set of inputs to invoke these nodes and providing a single set of
outputs to retrieve the data, as well as giving clear names to nodes and
parameters. All of these changes are relatively minor, with the benefit in legibility
being particularly pertinent in collaborative environments where the model is
being shared amongst many people.

9. Acknowledgements
This research was funded by the Australian Research Council discovery grant
"Challenging the Inflexiblity of the Flexible Digital Model" lead by Mark Burry,
John Frazer and Jane Burry. The parametric workshop was part of Mark Burry’s
VELUX visiting professorship to the Royal Danish Academy of Fine Arts in
association with the Center for IT and Architecture.

D. DAVIS, J. BURRY and M. BURRY

68

References

1. Brooks, F. (1975). The mythical man-month : essays on software engineering.
Addison Wesley Longman Inc.

2. Burry, J., & Burry, M. (2006). Sharing hidden power - Communicating latency in
digital models. In eCAADe Conference Proceedings. Volos, Greece.

3. Burry, M. (1996). Parametric Design and the Sagrada Família. Architectural Research
Quarterly 1, N° Summer : 70-80.

4. Dijkstra, E.W. (1968). Go To Statement Considered Harmful. Communications of the
Association for Computing Machinery 11, N° 3 : 147-148.

5. Dorfman, M. & Thayer R., (eds.). The Software Crisis. In Software Engineering,
1-22. Wiley-IEEE Computer Society Press, 1996.

6. Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design Patterns. Edited by
Addison-Wesley Pub Co. Elements. Addison-Wesley.

7. Graves, M. (2003). Scaffolding Reading Experiences : Designs for Student Success.
Reading. 2nd ed. Christopher-Gordon.

8. Lewis, C. & Rieman, J. (1993). Task-Centered User Interface Design : A Practical
Introduction. Shareware book available at http://hcibib.org/tcuid/tcuid.pdf.

9. Mall, R. (2004). Fundamentals of Software Engineering. 2nd ed. Prentice-Hall.
10. Monedero, J. (1997). Parametric design. A review and some experiences. In

Challenges of the Future (15th eCAADe Conference Proceedings). Vienna (Austria).
11. NATO Science Committee. (1968). Software Engineering. Garmisch : NATO Science

Committee.
12. Nielsen, J. (1994). Guerrilla HCI : Using Discount Usability Engineering to Penetrate

the Intimidation Barrier. Edited by R.G., Bias & D.J., Mayhew. Costjustifying
usability : 245-272.

13. Nielsen, J. (1993). Usability Engineering. San Diego : Morgan Kaufmann.
14. Woodbury, R.F. (2010). Elements of Parametric Design. Oxon : Routledge.
15. Woodbury, R., Aish, R. & Kilian, A. (2007). Some Patterns for Parametric Modeling.

In 27th Annual Conference of the Association for Computer Aided Design in
Architecture, 222-229. Halifax, Nova Scotia.

16. Wong, Y.K. & Sharp, J. (1992). A Specification and Design Methodology Based on
Data Flow Principles. In Dataflow computing : Theory and Practice, edited by John
Sharp, 37-79. Norwood : Ablex Pub.

