
Design and semantics of form and movement196

Yeti: Designing geometric tools with
interactive programming

Daniel Davis, Jane Burry, Mark Burry
dmmd123@gmail.com, jane.burry@rmit.edu.au, mark.burry@rmit.edu.au

Abstract
Designers scripting geometric tools have had two
options: either use an interactive visual script, or forgo
interactivity to use a text-based script. Within this
paper we consider a third option: interactively writing
text-based scripts. Described is an interactive scripting
environment created for this purpose, which manages
geometry with a Directed Acyclic Graph generated
from the text-based relational markup language, YAML.
The environment is compared to the two existing
scripting options by using them to draw three geometric
compositions. We argue it is possible to interactively
script geometric tools, and that interactivity is a vital
component in making scripting intuitive.

Keywords
Interactive programming; End-user programming;
Design computation; Parametric modelling.

1 Introduction
Since Sutherland’s digital Sketchpad, designers have
aspired to make coding more like sketching. Prior
to Sutherland, computer programs were manually
executed in ‘batches’. The designer would compile the
code, define inputs and parameters, run the program
and wait – often a long time – for the result. When
Sutherland developed Sketchpad in 1963 he sought to
overcome the delays in batch processing and allow “man
and a computer to converse rapidly.” [1]. Sketchpad

was one of the first interactive computer programs.
It displayed the results of the designer’s actions
immediately, which facilitated feedback and reflection in
a conversation between designer and computer.
Almost 50 years after Sketchpad, interactive graphics
programs have all but replaced the drawing boards
they once imitated. These design programs each offer
a prescribed palette of design tools and often afford
designers the ability to script their own customised
tools. A script defines a list of operations for the
computer to carry out. Yet when designers attempt to
design their own design tools with scripts, they must
once again design using a batch-processed system. This
is because scripting in its current form involves writing
out a procedural script, pressing compile, setting the
inputs for the script, and waiting for the computer to
draw the result – like the programs prior to Sutherland.
Unlike sketching, or even digital drafting, with scripting
there is a pronounced delay between the action of
the user (changing the code) and the reaction of the
system (redrawing the geometry). Such a delay can slow
the pace of iteration in the design process and hinder
feedback reaching the designer in a timely manner.
Recently a number of scripting languages have emerged
for musicians that enable the interactive modification of
text-based scripts. Using these interactive programming
languages the musician can immediately hear how
changes to a script driving a musical performance will
sound. These languages appear to be a viable method

Design and semantics of form and movement 197

for achieving a similar level of interactivity in geometric
design. However, as will be outlined in this paper, the
emphasis musicians place on tempo and timing makes
their techniques unsuitable for the computationally
intensive task of generating geometry.
With no existing interactive scripting tools for describing
geometry, this research seeks to better understand the
technical and cultural limits of designing geometry with
interactive scripts. This paper begins with an outline
of an interactive scripting technique that overcomes
some of the computational impediments associated
with the interactive scripting of geometric tools. ‘Yeti’
is an interactive scripting environment developed to
utilise this technique, the implementation details of
which are explained in this paper. Using a reflective
practice methodology, Yeti is tested in a pilot study
by applying it to three geometric design problems and
comparing its performance to that of non-interactive
text-based scripts and interactive visual scripts. The
three design problems are taken from an architectural
context, although it is anticipated this research will be
of interest to designers outside the field of architecture,
particularly those describing geometry with their own
scripted design tools or parametric models. The paper
begins by describing some of the existing scripting
environments designers utilise.

2 Existing Design Scripting Methods
A script defines a list of actions for the computer
to carry out. In contemporary usage, scripting is
essentially synonymous with programming. As such
a script can automate tasks that would otherwise be
performed through the user interface and it can also
define entirely new actions. For designers the primary
motivations to script are: productivity (doing tasks that
would take too long otherwise), and control (linking
various actions together to create customised tools)
[2]. Design software packages often encourage scripting
through inbuilt scripting interfaces, and there are also
applications (like Processing) that are created explicitly
as standalone scripting interfaces for designers. With
design increasingly being conducted on computers,
so too scripting has increasingly become a way for
designers to automate and control the design process.
To run a script, the computer generally has to interpret
(or compile) the script into a machine-readable set of
instructions. This is supported in scripting interfaces
through an ‘Edit-Interpret-Run’ loop, whereby the

designer edits the text of the script, presses a button
to activate the script, and waits first as the computer
validates the script, then waits as the computer
interprets the script into a machine-readable set of
instructions and finally waits as the computer runs this
set of instructions. The notable exception is some visual
programming languages, like Max-MSP, which will be
discussed in the subsequent section. As a consequence
of the Edit-Interpret-Run loop, there is a pronounced
delay between the action of the user (editing the
script) and the reaction of the system (redrawing the
geometry). This delay impacts the rate of iteration
since each variation of the script the designer tests goes
through the Edit-Interpret-Run loop, often with the
designer manually deleting the geometry of the previous
loop between iterations.

3 Interactive Scripting
Interactive programming (also known as live-
programming) is a method for editing and interpreting
scripts while they run. To the end user there appears
to be no Edit-Interpret-Run loop because any edit they
make is automatically incorporated with the already
running instance of the script. Behind the scenes there
is still an Edit-Interpret-Run loop, where the computer
automatically interprets an edit and in real-time invisibly
transitions the running instance of the script to the new
edited version. The net effect is that the end-user can
experience in real-time the consequences of editing a
script – closing the gap between action and reaction.
The crux of creating an interactive programming
environment is smoothly transitioning a running script
between different versions of the script. The most
obvious method is to abandon the currently running
script whenever it is edited, and automatically interpret
and run the updated version of the script. For certain
applications, such as SimpleLiveCoding for Processing
[3], this is effective. However for the computationally
taxing task of drawing geometry this is less desirable
since it involves abandoning all the previous calculations
and recalculating the geometry every-time the script is
modified, even if the modification only changed a small
and discrete part of the geometry. The method typically
employed in interactive debugging is to maintain the
state of the code – through a call stack – allowing the
code to be rewound to the site of the edit [4], however
all subsequent code still needs to be recalculated, even if
it is not affected by the modification.

Design and semantics of form and movement198

Perhaps one of the most developed systems for
transitio ning scripts has been developed by musicians,
for whom interactive programming allows modification
of scripts driving a musical composition while
immediately experiencing the sonic implications.
The first performance with an interactive script was by
Ron Kuivila at STEIM in 1985 [5]. In 2000, Supercollider
led a revival of text-based interactive programming
for musicians, and was followed by a number of similar
languages like ClanK and Impromptu. All of these
languages share in common the need from musicians to
invoke actions relative to an underlying time signature.
Typically this occurs through scheduling a reoccurring
sequence of actions to be performed, and whenever
the script is modified, adding the modified actions to
the queue [6]. These musical environments have been
adapted to generate geometry but the repetitive cycling
of actions makes it unsuitable for generating anything
other than basic geometry [7].
Therefore despite the scattered implementations
of interactive programming, few – if any – are suitable
for the unique challenges designers face when shaping
geometry with scripts. Designers desiring the inter-
active feedback of sketching while they script currently
have to make do with Edit-Interpret-Run loops. This is
primarily due to the difficulty of editing and updating an
already running script while handling the computational
intensity of geometric calculations.

4 Introducing Yeti
The problem of editing a script while it runs geometric
calculations has been elegantly overcome by the inter-
active visual scripting environments GrasshopperTM,
HoudiniTM and Generative ComponentsTM. These
three environments use Directed Acyclic Graphs (DAG)
to represent relationships between geometry [8].
A relationship may be that a line is tangent to a circle
(the circle is a parent of the line) and whenever the
circle is adjusted, the line moves to satisfy the tangential
relationship. From these geometric relationships the
dependencies of the geometry can be extracted. Thus
when part of the DAG is edited, the only recalculation
required is to the geometry dependent (and therefore
affected) by the edited part of the DAG [8]. Since a
node within the DAG is directly associated with the
geometry it creates, the node can manage the creation
and deletion of geometry without the designer needing
to remove old instances of the geometry. The DAG

is defined through visual interfaces in Grasshopper,
Houdini and Generative Components. Text-based
scripts within these environments cannot not be inter-
actively edited and still use the Edit-Interpret-Run loop.
Yeti is a text-based interactive scripting environment
developed for the interactive creation of geometric
tools. Yeti uses a DAG to manage the editing and
calculation of geometry, but the DAG is defined through
a text-based script rather than the visual interfaces used
by Grasshopper, Houdini and Generative Components.
The language of Yeti’s script is based on the relational
mark-up language YAML [9]. The syntax consists of
‘key: value’ pairs, where the key is assigned the value
to the right (the ‘x:’ in Table 1, has a value of −10).
More complex values can be assigned through a list
of ‘key: value’ pairs, separated from the parent key
with indentation (the ‘point:’ in Table 1, has been
assigned ‘key: value’ pairs for x, y & z). Relationships are
defined by naming keys (names start with the ‘&’) and
referencing them as a value (references start with the ‘*’).

Table 1. A simple Yeti script in YAML (left) and the

corresponding DAG (centre) with the geometry it

produces (right). Note all keys in the Yeti script map

directly to nodes in the DAG.

The advantage of using YAML is that the ‘key: value’
pairs map directly into a Directed Acyclic Graph, where
the key defines a node and the value defines either:
the property of the node, or its relationship to other
nodes (see Table 1). Whenever a script is modified in
Yeti, the underlying DAG is automatically updated in the
following process:
1. The edited script is tokenised into keys and values.
2. For every key, a corresponding node is generated in

the DAG.
3. The node is assigned properties and related to

other nodes based on the values assigned to the
corresponding key.

Yeti (YAML) Directed Acyclic Graph Geometry

point:
››x: −10
››y: 10
››z: 13

Design and semantics of form and movement 199

4. Once the DAG is created, all nodes dependent upon
deleted, added or modified nodes are recalculated,
creating a new instance of the geometry.

In addition to interactive editing of running scripts, the
YAML language and underlying DAG enable a number
of unique features in Yeti:

Error handling: The interpretation of code while it is
being written frequently causes errors because the
computer is often unable to resolve the ambiguity of
partly written code. Yeti interprets and run scripts
with errors by ignoring ‘key: value’ pairs with errors
in them. Typically errors cannot be ignored in other
languages because it interrupts the top-to-bottom
progression of logic.
Interactive debugging: Clicking a key in the code
highlights the geometry controlled by the key. This
helps clarify the often-enigmatic connection between
code and geometry that characterises scripting. Yeti is
able to do this because keys in the script are directly
associated with parts of the model’s geometry via
nodes in the DAG.
Instancing of objects: The YAML language can be
extended to include new keys. The user does this
by creating a prototype object for the key through
a list of ‘key: value’ pairs. When the new key is used
in the script, a new instance of the prototype object
is created and modified for the unique properties
of that object instance. This is a common feature in
text-based scripts but one that visual scripts often
do not support.

Table 2. Comparison of scripts to draw the same

constrained line in Rhino Python and Yeti.

YAML also has its drawbacks. The definition of
geometric properties and relationships in YAML is a
significantly different method of scripting compared

to the ordered list of procedural actions familiar to
many scripters (the two paradigms are compared in
Table 2). Similarly the recursion offered in procedural
languages is not yet possible in Yeti due to the difficulty
of representing recursion in a DAG. For this reason Yeti
is not Turing-complete, and therefore unsuitable for
certain operations like L-systems and cellular automata.
Despite these quirks and limitations, YAML and the
underlying DAG is fundamental to empowering the
interactive scripting of geometric calculations, along
with a number of other advantages like interactive
debugging and error handling.

5 Designing Geometry with Interactive
Scripts

5.1 Method
To explore the viability of interactively generating
geometric tools with text-based scripts, we carried
out three design projects with the iterative scripting
environment Yeti (version 0.3). As a benchmark we
repeated the work with two established methods of
scripting: interactive visual scripting in Grasshopper
(version 0.8.0052), and text-based scripting with
Rhino Python (In Rhino5, version 2011-11-08). The
three design problems have an architectural bias but
the focus of the analysis is towards the shaping of
geometry and designers who do so already through
scripting or parametric modelling. Since this is the first
time interactive scripting has applied in this context, the
investigation is a pilot study designed to identify the major
issues with interactive scripting in anticipation of refining
Yeti further. The three projects used in the study are:

3URMHFW���	����$[HO�.LOLDQ·V�5RRIV
Axel Kilian developed a pair of tutorials in 2005 to
teach the then highly experiential visual scripting
software, Generative Components. The tutorials
demonstrate how to developed a customised geometric
tool with scripting and introduce “several key
parametric modelling concepts,” such as: geometric
constraints, data arrays, modularity, and aggregate
difference from topological similarity [10]. These two
roofs form an interesting benchmark, both because they
employ essential scripting techniques, and because they
hold some historic credence with which it is possible to
track the development of parametric modelling.

Python Yeti (YAML)

P1 = Rhino.Geometry.Point3d(0,10,13)
P2 = Rhino.Geometry.Point3d(P1.X, P1.Y+20,0)
myLine = Rhino.Geometry.Line(P1,p2)
doc = Rhino.RhinoDoc.ActiveDoc
doc.Objects.AddLine(myLine)

line: &myLine
start: &p1
x: 0
y: 10
z: 13
end: &p2
x: *p1.x
y: (*p1.y + 20)

Design and semantics of form and movement200

3URMHFW����6PDUW�*HRPHWU\�����
As part of the Responsive Acoustic Surfaces workshop
at Smart Geometry 2011, two acoustic walls were
developed to test the sound scattering of various
plaster hyperboloid tile configurations [11]. Originally
the wall was designed with the interactive visual
scripting environment Grasshopper, used alongside
Digital Project and Open Cascade. From the workshop
it is known the project pushes the limits of interactive
design through the computationally expensive
calculation of the hyperboloid intersections, where
very subtle nuances in the planarity of the intersections
determine the project’s viability.

5.2 Differences between scripting environments
The following section broadly describes the main
differences between the three scripting environments,
with a focus on the technical capacity of each
environment.
Geometric output. The geometric library for Yeti is still
being developed but it was capable of creating the
geometry of the Kilian Roofs and creating the geometry
of the hyperboloid wall, as was Grasshopper and
Python. In all the environments the most challenging
geometric task was to encode the reasoning for which
side of the hyperboloid intersection to keep in project
three. The difficulty of expressing this indicates that

certain types of architecture are more amenable than
others to the logic of scripting, a logic Yeti follows.
Script length. The number of lines of code in the Yeti
scripts were essentially identical to the Python scripts,
although the lines of the Yeti scripts tended to be
sparser containing just ten characters on average,
whereas the lines in Python contained 25 characters
on average. The Grasshopper schemas are not directly
comparable to text-based scripts, but it should be
noted that the interface for Grasshopper did many
of the tasks that needed to be explicitly defined in
the Python and Yeti scripts, such as making geometry
visible. In the Python scripts, significantly more of the
script was involved with managing arrays of data, but in
Grasshopper and Yeti arrays of data were resolved by
the software rather than the user [12].
Speed of execution. Yeti remained responsive throughout
the two roof projects. On the more complex roof an
update cycle typically took 100ms, which was faster
than one can type. This is comparable to Grasshopper
and faster than the Python script, which took 2 seconds
to execute (Python’s biggest hindrance seems to be
the way it draws geometry). The intersections in the
geometry of the hyperboloid wall were too complex to
calculate in real-time with either Grasshopper or Yeti.
It was only possible to complete the project by disabling
the interactivity and reverting back to the manual Edit-

Fig. 2. Project one in Yeti (left)

the more complicated project

two in Yeti (right).

Fig. 3. Full-scale prototype at

Smart Geometry (left) and

associated digital model (right).

Design and semantics of form and movement 201

Interpret-Run loop employed by scripts like Python.
While interactive programming is useful on simple
projects, batch-processing is still a useful paradigm
to grind out computationally expensive geometry
and a useful paradigm for Yeti to fall back on.

5.3 Discussion: Intuition and Interactivity
In creating Sketchpad, Sutherland not only created
the first interactive CAD tool but also one of the
first programs to “eliminate typed statements (except
for legends) in favor of line drawings” [1]. Sutherland
described controlling a computer with text as “writing
letters to rather than conferring with our computers”
[1]. It is an argument about whether designers find
interactive drawing more intuitive than writing code.
In the past 50 years, despite the increasing prevalence
of scripting, overwhelmingly CAD software consists
of interactive visual interfaces activated with mouse
and keyboard shortcuts.
However for certain types of geometry, like the geo-
metry in the three projects above, scripting is the only
method of productively generating and controlling the
geometry. For these projects designers have no option
but to ‘write letters’ to the computer sent via the Edit-
Interpret-Run loop. In writing these letters, some of
the intuitiveness is bound to the language it is written
in. The scripts from Python and Yeti, while of a similar
length, are strikingly different in approach (See Table 2)
the Python scripts methodically working through a list
of actions while the Yeti scripts begin with the outcome
and describe the necessary parameters. For this
reason Yeti may seem unintuitive to designers already
conversant with procedural scripting languages like
Python [12]. Whether users new to scripting experience
this difference in intuition remains to be studied.
Another factor in the intuitiveness of letters written to
the computer is the speed they are returned. In carrying
out the three projects above, it is clear intuition and
interactivity are tightly coupled. Being able to click on
words in the Yeti script and see the geometry they
control highlighted, helps clarify their purpose. Similarly
being able to edit a parameter and instantly see the
geometry respond, makes manipulating the parameters
feel more intuitive.
While writing code often feels like ‘writing letters’, the
three projects above begin to uncover how interactivity
can make scripting a more conversant and therefore
intuitive experience. It remains to be seen if the

advantages interactivity brings are enough to overcome
the hindrances of needing to use a language like YAML.
The cultural implications of such a change could be
profound, particularly if scripting became intuitive enough
to use on projects other than those that can only be
productively generated and controlled with scripts.

6 Conclusion
Sutherland’s digital Sketchpad placed interactivity at the
foundation of digital design. When scripting designers
have had two options: either use an interactive visual
script, or forgo interactivity in favour of writing the
script with text. This paper has articulated a third
option: writing a text-based script in an interactive
programming environment. Significantly this research
has demonstrated it is possible to interactively program
computationally-intensive geometric tools. This can be
achieved by managing the geometry with a Directed
Acyclic Graph, which can be generated from a text-
based relational markup language like YAML. The mark-
up language used to attain the performance necessary
for interactive scripting may seem unusual compared
to the conventions of established methods of design
scripting, however there is a real benefit to being able
to instantly see how a change to the script will affect the
model’s geometry. In the future interactive program-
ming may make the act of writing code as responsive
for designers as the act of sketching in a Sketchpad.

Acknowledgments
This research was funded as part of the Australian
Research Council Discovery Grant ‘Challenging the
inflexibility of the flexible digital model’ lead by Mark
Burry, John Frazer and Jane Burry.

References
[1] Sutherland, I. (1963). Sketchpad: A Man-machine Graphical

Communication System. PhD Thesis, Massachusetts Institute

of Technology.

[2] Burry, M. (2011). Scripting Cultures. West Sussex: John

Wiley & Sons Ltd.

[3] Simple Live Coding. Retrieved November 19, 2011

from https://github.com/fjenett/simplelivecoding.

[4] Johansson, O. (2011). Describing Live Programming Using

Program Transformations and a Callstack Explicit Interpreter.

Masters Thesis, Linkoping University.

[5] Roads, C. (1986). The second STEIM symposium on inter active

composition in live electronic music. Computer Music Journal, 10(2),.

Design and semantics of form and movement202

[6] Wang, G., & Cook, P. (2004). On-the-!y programming:

Using code as an expressive musical instrument. In Proceedings

of the 2004 International Conference on New Interfaces for

Musical Expression (NIME). Hamamatsu: Shizuoka University.

[7] Sorensen, A. (2005). Impromptu : An interactive

programming environment for composition and performance.

In Paper presented to the Australasian Computer Music

Conference 2005. Brisbane: ACMA.

[8] Woodbury, R. (2010). Elements of Parametric Design.

Oxon: Routledge.

[9] Ben-Kiki, O., Evans, C., & Net, D. (2009). YAML Ain’t

Markup Language (YAML™) Version 1.2. 3rd.

http://www.yaml.org/spec/1.2/spec.html

[10] Woodbury, R., Aish, R., & Kilian, A. (2007). Some

patterns for parametric modeling. In Proceedings of the 27th

Annual Conference of the Association for Computer Aided

Design in Architecture. Halifax, Nova Scotia.

[11] Burry, J., Davis, D., Peters, B., Ayres, P., Klein, J., Pena de

Leon, A., et al. (2011). Modeling hyperboloid sound scattering:

The challenge of simulating, fabricating and measuring.

Proceedings of Design Modeling Symposium Berlin. Berlin:

Springer Verlag.

[12] Janssen, P., & Chen, K. (2011). Visual Data!ow Modeling:

A Comparison of Three Systems. Proceedings of CAAD

Futures 2011. Liège: Les Éditions de l’Université de Liège.

Daniel Davis,

Jane Burry,

Mark Burry

Spatial Information

Architecture

Laboratory, RMIT,

Australia

