
C. M. Herr, N. Gu, S. Roudavski, M. A. Schnabel, Circuit Bending, Breaking and Mending: Proceedings
of the 16th International Conference on Computer-Aided Architectural Design Research in Asia, 29–38.
©2011, Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong

The flexibliTy of logic programming

Parametrically regenerating the Sagrada Família

DANIel DAvIS1, JANe BuRRy2 and MARK BuRRy3

Royal Melbourne Institute of Technology, Melbourne, Australia
1. daniel.davis@rmit.edu.au, 2. jane.burry@rmit.edu.au,
3. mark.burry@rmit.edu.au

abstract. Flexibility is a major attribute of parametric modelling,
however designers find it hard to maintain flexibility throughout their
projects. One cause may be the programming paradigm of the para-
metric model. Currently this is dataflow programming, which makes it
easy to create and flex parameters, but difficult to modify relationships.
This paper investigates the implications of changing the programming
paradigm in a parametric model to logic programming. A qualitative
account is given of using dataflow programming and logic program-
ming to generate a portion of the Sagrada Família church. It finds
logic programming adept at translating explicit models into parametric
models, but lacking continuous flexibility. This research demonstrates
there are different types of flexibility within the model and architects
can privilege certain flexibility types by selecting the programming
paradigm of the model.

Keywords. logic programming; parametric modelling; end user pro-
gramming; practice based research.

1. introduction

In a parametric model, the geometry is a function of a finite set of param-
eters, with the collection of relationships between functions and parameters
sometimes termed the schema. If the schema does not contain a parameter
to modify the model in the desired way, the schema needs to be modified in
a process Woodbury (2010) describes as “erase, edit, relate and repair.” The
process of relating and repairing the schema can be time consuming, particu-
larly if the consequence of these modifications needs to be traced through a

30 D. DAvIS, J. BuRRy AND M. BuRRy

complex network of relationships. Mark Burry (1996) articulated one of the
earliest instances of this problem in architectural practice, which occurred
when he attempted to modify a schema of the Sagrada Família to generate
paraboloids instead of conoids and concluded that there was “no solution
other than to completely disassemble the model and restart at that critical deci-
sion.” Burry went on to suggest delaying the construction of the parametric
model until the design problem is known, a practice that is common in con-
temporary architecture where parametric models are often not built until the
design documentation stage. Constructing parametric models reveals “poten-
tial ranges of possibilities” and leads to further design exploration by design
teams that, paradoxically, may not be accommodated in the schema of the
model whose variability has suggested these new avenues. (Burry and Burry,
2006) The rigidity of parametric models to unanticipated design changes (a
common occurrence in a cyclic design process) is a persistent problem that
has not improved despite the now widespread use of parametric modelling in
practice. Woodbury, Aish, and Kilian (2007) suggest that design changes can
be anticipated through a series of ‘design patterns’ employed whilst construct-
ing a parametric schema. Their work is significant for two reasons: firstly it
suggests that parametric flexibility is related to the structure of the paramet-
ric schema; secondly it provides a model for improving parametric schema
through appropriating software engineering principles from computer science.

In computer science, logic programming is one alternative to dataflow
programming (the predominant software paradigm for parametric models).
This paper investigates the affect on parametric models, in relation to their
construction and modification, of changing the schema paradigm from a data-
flow paradigm to a logic programming paradigm. The study gives a qualita-
tive account of using the two paradigms to solve an actual design problem
faced on Antonio Gaudí’s Sagrada Família church. The paper begins with the
history of logic programming in architecture, followed by a description of
the implementation method, and a discussion about using logic programming
and dataflow programming to generate parametric schemas, before conclud-
ing with the findings of this study.

31THe FleXIBlITy OF lOGIC PROGRAMMING

2. Schema paradigms and logic programming in architecture

2. 1. THe DATAFlOW PARAMeTRIC SCHeMA

Figure 1. Left: A schema as a directed acyclic graph. The data from the two points flows to the
line node informing its construction. Right: Geometry that results from schema on left.

The parametric schema is the collection of relationships within a parametric
model. The schema can be represented as a directed acyclic graph, where the
connection between nodes represents a relationship in the parametric model
(Figure 1). This graph is a type of dataflow programming where the nodes
represent operations and the edges describe the flow of data between opera-
tions. Modifying the input data, changes the data that flows through the graph,
in turn modifying the output (In Figure 1, if the location of Point 1 is modi-
fied, the line is automatically redrawn). Being able to automatically redraw
geometry by only modifying input data is one of the advantages of parametric
modelling and can be thought of as continuous flexibility.

Figure 2. Left: Modification of schema in Figure 1 so that the line follows a vector. Note that
Point 1 is all that remains of the schema in Figure 1, even though the geometry on the right

has not changed radically.

Parametric models generated with dataflow programming can become difficult
to modify if the model lacks an input to change the geometry in the desired
way. When this occurs, the schema must be manually rebuilt to accommodate
the new input in a process Woodbury (2010) describes as “erase, edit, relate
and repair.” The model’s ability to undergo this process can be described as

32 D. DAvIS, J. BuRRy AND M. BuRRy

discrete flexibility. In dataflow languages these processes can be problematic
because relating and repairing relationships between nodes can change the
flow of data with downstream consequences throughout the schema, even if
the physical relationships between the geometry remains the same. Figure 2
shows adding a vector as an input to the schema in Figure 1 rearranges the
relationships within the schema to the point where it would be easier to build
the schema in Figure 2 from scratch than modify the schema in Figure 1. It is
not uncommon for a complex production model to encounter these moments
of discrete inflexibility, causing major time delays to the project while rela-
tionships are either reconstructed or the schema rebuilt from scratch (Burry
and Burry, 2006).

2.2. lOGIC PROGRAMMING AND BACKGROuND WORK

One alternative to dataflow programming is logic programming. Using logic
programming, the user can focus on describing relationships between objects
and leave the logical inferences (in this case the way data flows in these
relationships) for the computer to deduce. logic programming has been the
subject of much investigation within architecture, beginning with Swinson’s
1982 paper Logic Programming: a computing tool for the architect of the
future. Swinson utilised logic programming on four simple spatial planning
problems and proposed this as an area for further investigation.

Following on from Swinson’s work, there was a flurry of studies in the
mid 80’s through to the mid 90’s. In 1984 Gonzales et al concluded, incor-
rectly, that computers and CAD will be based on logic programming in the
future. The first examples of logic programming used to draw 2d parametric
shapes came in 1985 from Brüderlin, and in 1986 from Helm and Marriott. A
more comprehensive attempt to generate 3D parametric models was made by
Woodbury (1990) using the ACeND language – not strictly a logic program-
ming language, although it shares many similarities. In the same year Mitch-
ell (1990) released the Logic of Architecture, which contains descriptions of
architecture in first order logic, similar to Prolog. The closest project to our
project in technical implementation is Aldefeld’s (1988) use of forward-chain-
ing to infer rules about constraints on parametric models. We use a similar
method to infer rules about parametric schemata. A comprehensive review of
logic programming in architecture between the mid 80’s through to the mid
90’s is documented in Fudos’ PhD thesis (1995).

In the late 90’s and 00’s, research into logic programming in architecture
dropped off dramatically. Despite this, there are still examples of logic pro-
gramming experiments, such as Martin and Martin’s Ployformes tool (1999)
to draw complex polygons and Makris et al MultiCAD (2006), which com-

33THe FleXIBlITy OF lOGIC PROGRAMMING

bines logic programming with a genetic algorithms.
Despite the optimism of Swinson, logic programming has not become the

“computing tool for the architect of the future” (Swinson, 1982). It is interest-
ing to note that for all of their proclamations about the future of architecture,
none of the papers surveyed applied logic programming to an architecture
project. This case study differs from prior research by testing logic program-
ming in a highly contained geometrical design problem from the Sagrada
Família that exhibits the messy complexity, experienced in practice, of resolv-
ing multiple design constraints simultaneously. unlike the previous research,
which attempted to create the entire geometric model with logic program-
ming, this research uniquely explores generating just the parametric schemata
through logic programming and measures its success in relation to schema
flexibility.

2.3. lOGIC PROGRAMMING APPlIeD TO PARAMeTRIC SCHeMA

Figure 3. How a parametric schema is constructed with logic programming. Progression from
axioms, into an undirected graph, which is then interpreted into a schema.

Defined by Sterling and Shapiro (1994), logic programming has two parts:
a set of axioms “defining relationships between objects” and an interpreter
that “deducts the consequences” of the axioms. These steps correspond to
our logic programming process (Figure 3) where initially axioms about the
schema are declared, then in an intermediate step the axioms are compiled
into an undirected graph, and then finally the interpreter infers the flow of data
through the schema. The interpreter is based on a forward-chaining reason-
ing method. In Figure 3, the interpreter can be infer that Node A (a point) is
the parent of Node C (a line) because the axioms declare that a line can be
constructed from a point, and that a point cannot be constructed from a line.
If the graph is over-constrained, the user is asked to resolve conflicts between
the axioms. If the graph is under-constrained, a depth first search is applied
to discover possible configurations for the user. Ideally the axioms will fully
define the graph and the forward chaining interpreter will be able to infer the
entire flow of data in the schema.

34 D. DAvIS, J. BuRRy AND M. BuRRy

Figure 4. Modification of the axioms from Figure 3 so that a vector drives the schema. This
is the same modification as was seen in Figure 2. The text in green is additional axioms from

Figure 3, the interpreter then automatically rebuilds the schema from these axioms.

The benefit of this method is that the user only needs to define connections
between nodes, while the interpreter can infer the parent-child orientation of
these relationships, generating the flow of data. Therefore, rather than “erase,
edit, relate and repair” the user only needs to erase and edit the axioms, with
the relating and repairing automatically deduced by the logical interpreter.
Figure 4 shows adding a vector as an input to the schema in Figure 3 can be
achieved by adding four new axioms while the interpreter infers the new data-
flow (contrast this to the example in Figure 2, where, one the same problem,
rebuilding the dataflow schema was easier than modifying it). This example
depicts how the forward-chaining interpreter can carry out the stages of relat-
ing and repairing during a discrete modification of the schema, although this
example also exposes how an additional layer of abstraction could make it
difficult for the user to understand why interpreter has constructed particular
relationships.

3. application to the Sagrada família

This section compares dataflow programming and logic programming as a
method to solve a real constraint problem in the geometry for the ‘Fronton’
(gable) of the Sagrada Família.

3.1. THe PROBleM FACeD ON THe SAGRADA FAMílIA

The Sagrada Família by Antoni Gaudí’s has been under construction in Barce-
lona, Spain since 1882. Design and construction has recently commenced on
the tower of Jesus; the central tower above the crossing. Forming the base of
this tower are the ‘Frontons’ which are a matching set of 17 metre high arches
placed above three windows on opposite sides of the tower. The Frontons
were designed parametrically, however during the design process they were
converted into explicit geometry and over subsequent revisions the original

35THe FleXIBlITy OF lOGIC PROGRAMMING

parametric properties became lost. In 2010, during the preparation of the con-
struction documentation for the Frontons, it was decided the original paramet-
ric rules needed to be reapplied to the distorted geometry by converting it back
into a parametric model. An example of the distortions is given in Figure 5.

Figure 5. Left: Final version of the Fronton produced by dataflow programming. Right:
Plan view of Frontons illustrating two problems with the original model, faces that were not

orthogonal and angles that were not correct – every face had one of these errors.

3.2. uSING A DATAFlOW SCHeMA

The conversion of the Frontons from an explicit model to a parametric model
was initially undertaken using a dataflow parametric model. The process of
generating the model occurred over a period of two weeks and took 32 hours.
The final dataflow model was driven from 35 numeric parameters, which
flowed through approximately 3000 connections to 1050 operations generat-
ing the revised geometry of the Frontons. The architects asked for two modi-
fications, but fortunately the schema was developed with parameters antici-
pating these changes and the modifications occurred without rebuilding the
schema.

3.3. uSING A lOGIC PROGRAMMING SCHeMA

The same problem of converting the explicit model of the Frontons to a
parametric model was solved with logic programming. Approximately 600
axioms were required to generate the schema. Most axioms could be auto-
matically generated by a program that identified the geometric relationships
already present in the explicit model (this can not be done on a graph based
schema because they require not only the relationship, but the orientation of
the relationship as well). The remaining 100 axioms were generated manu-
ally in a process that took 5 hours, making it significantly faster than dataflow
programming. The two modifications could be accommodated by adding new
axioms and this in turn allowed the forward-chaining algorithm to infer the

36 D. DAvIS, J. BuRRy AND M. BuRRy

modified schema.

4. comparison and discussion

4.1. RelATIve SPeeD

It was approximately 5 times faster to build the schema with logic program-
ming compared to dataflow programming. The increase in speed came from
logic programming being able to generate large parts of the axioms automati-
cally from the already existing, explicit, geometry of the Frontons. This speed
advantage seems highly problem dependent and any problem that does not
involve converting explicit geometry into a parametric model is unlikely gen-
erate such a speed difference.

4.2. leGIBIlITy

As the complexity of the schemas increased, both methods became illegible.
In the dataflow language the connections were like spaghetti, making it dif-
ficult to track what rules had been applied; on three occasions rules were not
applied because they seemed to be already present, a fact only uncovered by
project architects measuring the model. logic programming was equally dif-
ficult to read because it referred to geometry by name and it was difficult to
assign meaningful names to the 111 points and 96 surfaces. This was slightly
mitigated by grouping axioms together, so even if the axioms were illegible,
the user could understand a group’s function. The extra layer of abstraction
generated by using logic programming was not an issue in this case because the
problem was so complex the only way to understand the system was through
the output, in this case the geometry. legibility is still a largely unexplored
aspect of parametric modelling. It has implications for the use (and reuse) of
parametric models in a team environment because editing the model requires
comprehending it first. Neither dataflow programming nor logic programming
addresses this issue, but modular programming or unit testing may offer fruit-
ful areas of enquiry.

4.3. FleXIBIlITy

Flexibility is often described on a spectrum of more flexible and less flexible.
Indeed the premise of this research was to discover a more flexible parametric
modelling technique. However, more flexible is an insufficient description of
the differences between logic programming and dataflow programming. Flex-
ibility is not a spectrum, it is a combination of modelling attributes whose
measurements is context dependent.

37THe FleXIBlITy OF lOGIC PROGRAMMING

In the context of a real constraint problem in the geometry for the Fronton
of the Sagrada Família: logic programming was the more flexible way to gen-
erate the schema from explicit geometry; both methods were equally flexible
when making the required changes, although changes took significantly longer
to propagate in logic programming; and both methods were equally illegible
when identifying where to make the changes. However, this can not be extrap-
olated to all modelling situations because the results are highly dependent
upon circumstance – such as there being pre-existing explicit geometry and
the problem being of a high level of complexity. What can be extrapolated is
the characteristic flexibility of the programming paradigm in each of these
aspects – logic programming is likely to be more flexible than graph based
modelling when converting explicit models to parametric models, and like-
wise, dataflow programming is likely to be more flexible when propagating
parameter changes through the model. Since a parametric model cannot be
easily switched from one programming paradigm to the other, the initial deci-
sion regarding what programming paradigm to generate the parametric model
in, is critical. This is a decision can help make the model more or less flexible
in particular aspects of flexibility. Further research is needed to help guide
designers in making this decision.

4.4 HAve We SeeN THIS BeFORe?

In many ways, the current situation with inflexible parametric models mirrors
the 1960’s ‘software crisis’ where the major hindrance to the application of
computation became the software developer’s ability to write code for these
complex problems. In a similar way, the current limitation on parametric
modelling is the designer’s ability to generate a flexible parametric model,
particularly when faced with the complexity of pioneering projects like the
Sagrada Família. There was no ‘silver bullet’ to the software crisis, instead
new programming paradigms, new ways of structuring code, new code librar-
ies, new environments for generating code and new ways of managing code
development, helped pull programming out of its crisis (Brooks, 2010). This
research has shown that the programming paradigm of the parametric model
is one way to influence model flexibility, but there is still much more to learn
from how software engineers structure code.

5. conclusion

Logic programming is not a ‘silver bullet’ for parametric flexibility. Instead,
this paper has shown that flexibility manifests in different forms within the
parametric model, and that the programming paradigm of the model has some

38 D. DAvIS, J. BuRRy AND M. BuRRy

influence over these types of flexibility. By selecting the programming para-
digm the designer can privilege certain types of flexibility, although how to
make this decision deserves to be further explored. In this study, our novel
application of logic programming to the generation of parametric schema,
facilitated the translation of an explicit model into a parametric model while
hindering the continuous flexibility of the model, when compared to a similar
model created with dataflow programming. This paper has demonstrated that
the programming paradigm has a significant impact on how long a parametric
model takes to generate, as well as types of flexibility present.

acknowledgements
This research was funded by the Australian Research Council Discovery Grant, Challenging the
Inflexibility of the Flexible Digital Model, lead by Mark Burry (RMIT), John Frazer (QuT) and
Jane Burry (RMIT). The work on the Sagrada Família was funded with the generous support of
the Patronat of the Sagrada Família church.

references
Aldefeld, B.: 1988, Variation of geometries based on a geometric-reasoning method, Computer-

aided design, 20(3), 177-126.
Brüderlin, B.: 1985, Using Prolog for constructing geometric objects defined by constraints:

Proceedings of EUROCAL ’85, linz.
Brooks, F.: 2010, The design of design: Essays from a computer scientist, Pearson, Boston.
Burry, J. and Burry, M.: 2006, Sharing hidden power: Communicating latency in digital models:

Proceedings of 24th eCAADe Conference, education and research in computer aided archi-
tectural design in europe, volos, Greece.

Burry, M.: 1996, Parametric design and the Sagrada Família, Architectural research quarterly,
1996(1), 70-80.

Fudos, I.: 1995, Constraint solving for computer aided design, PhD, Purdue university.
Gonzales, J.; Williams, M. and Aitchison, I.: 1984, Evaluation of the effectiveness of Prolog for

a CAD application, IEEE computer graphics and applications, 4(3), 67-75.
Helm, R., Marriott, K.: 1986, Declarative Graphics: Proceedings of 3rd International Confer-

ence on Logic Programming, Association for logic Programming, london.
Makris, D.; Havoutis, I.; Miaoulis, G. and Plemenos, D.: 2006, MultiCAD – MOGA A system

for conceptual style design of buildings: Proceedings of 3ia2006, International Conference
on Computer Graphics and Artificial Intelligence, Limoges.

Martin, P. and Martin, D.: 1999, PolyFormes: Software for the declarative modelling of poly-
hedral, The visual computer, 15(2), 55-76.

Mitchell, W.: 1990, The logic of architecture, MIT Press, Massachusetts.
Sterling, L. and Shapiro, E.: 1994, The art of Prolog, MIT Press, Massachusetts.
Swinson, P.: 1982, Logic Programming: A computing tool for the architect of the future, Com-

puter-aided design, 14(2), 97-104.
Woodbury, R.: 1990, Variations in Solids: A declarative treatment, Computer and graphics,

14(2), 173-188.
Woodbury, R.: 2010, Elements of parametric design, Routledge, Oxford.
Woodbury, R.; Aish, R., and Kilian, A.: 2007, Some patterns for parametric modeling: Pro-

ceedings of 27th ACADIA Conference, Association for Computer Aided Design in Archi-
tecture (ACADIA), Halifax.

